计算机毕业设计Python+图神经网络考研院校推荐系统 考研分数线预测 考研推荐系统 考研爬虫 考研大数据 Hadoop 大数据毕设 机器学习 深度学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍文档

  • 项目概述

考研(研究生入学考试)是许多大学毕业生追求深造的一种途径。为了帮助考生更好地选择适合自己的研究生专业和院校,开发一个考研推荐系统可以为考生提供个性化的建议。该项目旨在通过数据分析和可视化技术,为考生提供基于数据的研究生专业和院校推荐。

通过数据分析和可视化,为考生提供具有个性化的研究生专业和院校推荐服务,帮助考生更好地选择适合自己的研究生方向。

该项目涉及数据处理、统计分析和可视化等技术,需要结合数据库管理、数据清洗、数据分析工具和可视化库进行开发实现。

  • 大数据分析、挖掘与可视化开发环境

    本项目采用Python语言及第三方库进行大数据分析、挖掘,包括训练模型的构建、后端开发环境、使用的第三方库和模型评估等方面。

  1. 软件开发环境:PyCharm、Navicat、MySQL

2.第三方库包

django==2.2.1
django-simpleui==2.1
djangorestframework==3.9.1
pandas
requests
Beautifulsoup4
pyecharts

  • 数据采集

本项目爬虫由两个爬虫同时组成,并可以并行爬取数据。

其中一个爬虫用于采集研究生院校的基本信息,包括学校名称、地理位置、专业设置等。另一个爬虫用于采集历年考研数据,包括报考人数、录取人数、专业录取分数线等。爬虫可以通过网络请求和HTML解析的方式获取所需数据,并将数据保存到本地csv文件或数据库中。

四、数据准备(含数据清洗、补全、整合、转换等)

在数据准备阶段,对采集到的数据进行清洗、补全、整合和转换等处理操作,以确保数据的质量和一致性。这包括处理缺失值、异常值、重复值等,对数据进行格式转换和标准化,以及将不同来源的数据整合到一个统一的数据集中。项目中所爬取的最新考研录取人数存在未知,且爬取下来的字段为-字符串,故将其修改为0.

  • 数据分析处理与训练模型的构建

在数据分析方面,我们分析了院校收藏Top10和院校评分Top10。统计了院校数量、双一流院校数量、自划线院校数量排名前十的省份。对专业报录比、学校报录比、学校报名前十做了统计分析。

在基于学校评分和收藏的模型构建阶段,我们将利用学生对不同学校的评分和收藏数据来构建推荐模型。这些评分和收藏数据可以反映学生对学校的偏好和兴趣。

  • 模型评估

数据准备:

收集学生对不同学校的评分和收藏数据。

对数据进行清洗和预处理,处理缺失值、异常值等。

特征工程:

根据评分和收藏数据,提取相关的特征,如学校评分、收藏次数等。

进行特征选择和转换,以提取对模型训练有用的特征。

模型评估:

基于准备好的特征和数据集,使用自定义算法构建推荐模型。

将数据集分为训练集和测试集,并评估模型的性能和准确性。

根据评估结果,对模型进行调整和改进,以提高推荐准确性和用户满意度。

模型优化:

可以尝试不同的机器学习算法、模型参数和特征组合,以优化模型表现。

进行模型调优和参数调整,以提高推荐结果的准确性和个性化程度。

七、数据可视化

数据可视化是将数据分析结果以直观、易于理解的图表、图形等形式展示的过程。在这一阶段,可以使用数据可视化技术,如绘制柱状图、折线图、散点图等,来展示分析结果和模型预测的信息。通过交互式界面和图表,用户可以根据自身需求进行筛选和选择,从而更好地理解和利用数据分析结果。

本项目使用柱状图分析了院校收藏和评分前十,饼状图统计了院校总数量、双一流院校数量、自划线院校数量前十的省份。最好,通过柱状图分析了每个院校及专业报录比前十情况,可以得出哪些院校或者哪些专业竞争比较激烈。

运行截图

核心算法代码解释

预测考研分数线的算法可以基于历史数据,使用线性回归模型进行简单的预测。以下是一个使用Python和scikit-learn库实现考研分数线预测的示例代码。假设我们有一个CSV文件score_data.csv,其中包含历年的年份和对应的考研分数线。

首先,确保你已经安装了scikit-learnpandas库。如果没有安装,可以使用以下命令进行安装:

pip install scikit-learn pandas

以下是预测考研分数线的Python代码:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt# 读取数据
data = pd.read_csv('score_data.csv')# 假设CSV文件有两列:'Year' 和 'Score'
X = data[['Year']].values  # 特征矩阵,只包含年份
y = data['Score'].values   # 目标变量,包含考研分数线# 划分训练集和测试集(这里为了简单起见,全部数据用于训练)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建线性回归模型
model = LinearRegression()# 训练模型
model.fit(X_train, y_train)# 预测测试集
y_pred = model.predict(X_test)# 输出测试集的真实值和预测值
print("真实值:", y_test)
print("预测值:", y_pred)# 可视化结果
plt.scatter(X, y, color='blue', label='真实数据')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='预测线')
plt.xlabel('年份')
plt.ylabel('考研分数线')
plt.title('考研分数线预测')
plt.legend()
plt.show()# 预测未来某年的分数线(例如2024年)
future_year = np.array([[2024]])
predicted_score = model.predict(future_year)
print(f"预测的2024年考研分数线为: {predicted_score[0]:.2f}")

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/469287.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小白初入Android_studio所遇到的坑以及怎么解决

1. 安装Android_studio 参考:Android Studio 安装配置教程 - Windows(详细版)-CSDN博客 Android Studio超级详细讲解下载、安装配置教程(建议收藏)_androidstudio-CSDN博客 想下旧版本的android_studio的地址(仅供参考&#xf…

020_Servlet_Mysql学生选课系统(新版)_lwplus87

摘 要 随着在校大学生人数的不断增加,教务系统的数据量也不断的上涨。针对学生选课这一环节,本系统从学生网上自主选课以及课程发布两个大方面进行了设计,基本实现了学生的在线信息查询、选课功能以及教师对课程信息发布的管理等功能&…

Vue Cli 脚手架目录文件介绍

小试牛刀 //vetur高亮; vuetab 快速生成 <template><div class"box">我是个盒子<button click"fn">按钮</button></div> </template><script> export default {methods:{fn(){alert("Hello Vue")}} …

[安洵杯 2019]easy_web 详细题解

知识点: 编码转换 命令执行 linux空格_关键字绕过 打开页面 发现url 是 /index.php?imgTXpVek5UTTFNbVUzTURabE5qYz0&cmd 有img参数和cmd参数 cmd参数是没赋值的,随便赋值为123456 页面没有反应 鼠标移动到图片下面时发现有东西,当然直接查看页面源代码也可以发现 尝…

完整培训教程:骨折图像分割

骨折图像分割系统源码&#xff06;数据集分享 [yolov8-seg-efficientViT&#xff06;yolov8-seg-C2f-CloAtt等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Global A…

文本语义分块、RAG 系统的分块难题:小型语言模型如何找到最佳断点

文本语义分块、RAG 系统的分块难题&#xff1a;小型语言模型如何找到最佳断点&#xff1f; 转自jina最新的关于文本语义分块的分享和模型 之前我们聊过RAG 里文档分块 (Chunking) 的挑战&#xff0c;也介绍了 迟分 (Late Chunking) 的概念&#xff0c;它可以在向量化的时候减…

物联网技术及其在智慧城市中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 物联网技术及其在智慧城市中的应用 物联网技术及其在智慧城市中的应用 物联网技术及其在智慧城市中的应用 引言 物联网概述 定义…

新的服务器Centos7.6 安卓基础的环境配置(新服务器可直接粘贴使用配置)

常见的基础服务器配置之Centos命令 正常来说都是安装一个docker基本上很多问题都可以解决了&#xff0c;我基本上都是通过docker去管理一些容器如&#xff1a;mysql、redis、mongoDB等之类的镜像&#xff0c;还有一些中间件如kafka。下面就安装一个 docker 和 nginx 的相关配置…

金属箔电阻

6.金属箔电阻如何实现“高精度” 电阻的阻值会受到各种“应力”影响而发生改变&#xff0c;离开稳定性的高精度是没有意义的。 例如&#xff0c;电阻出厂时的精度时0.01%&#xff0c;为了实现精度付出了高昂的费用&#xff0c;但在几个月的存储或几百个小时的负载后阻值的变化…

在Django中安装、配置、使用CKEditor5,并将CKEditor5录入的文章展现出来,实现一个简单博客网站的功能

在Django中可以使用CKEditor4和CKEditor5两个版本&#xff0c;分别对应软件包django-ckeditor和django-ckeditor-5。原来使用的是CKEditor4&#xff0c;python manager.py makemigrations时总是提示CKEditor4有安全风险&#xff0c;建议升级到CKEditor5。故卸载了CKEditor4&…

C语言 | Leetcode C语言题解之第559题N叉树的最大深度

题目&#xff1a; 题解&#xff1a; /*** Definition for a Node.* struct Node {* int val;* int numChildren;* struct Node** children;* };*/int maxDepth(struct Node* root) {if (!root) {return 0;}int depth 0;// 创建空队列const int qCap 10e4 1;str…

SQLI LABS | Less-40 GET-BLIND Based-String-Stacked

关注这个靶场的其它相关笔记&#xff1a;SQLI LABS —— 靶场笔记合集-CSDN博客 0x01&#xff1a;过关流程 输入下面的链接进入靶场&#xff08;如果你的地址和我不一样&#xff0c;按照你本地的环境来&#xff09;&#xff1a; http://localhost/sqli-labs/Less-40/ 都 Less-…

turtlesim修改窗口大小;添加自己的小乌龟;

目前手边有humble版本ROS。以此为教程。其他版本以此类推 github中搜索ros&#xff0c;然后选择ros官网&#xff08;九点方阵那个图标&#xff09;。然后 在branch中&#xff0c;选择humble&#xff0c;然后复制链接。 git clone https://github.com/ros/ros_tutorials.git -…

OSG开发笔记(三十一):OSG中LOD层次细节模型介绍和使用

​若该文为原创文章&#xff0c;未经允许不得转载 本文章博客地址&#xff1a;https://blog.csdn.net/qq21497936/article/details/143697554 各位读者&#xff0c;知识无穷而人力有穷&#xff0c;要么改需求&#xff0c;要么找专业人士&#xff0c;要么自己研究 长沙红胖子Qt…

VMWare虚拟机NAT模式下与外部主机(非宿主机)通信

VMWare虚拟机NAT模式下与外部主机(非宿主机)通信 1. VMWare虚拟机网络 VMWare的三种网络工作模式&#xff1a; Bridged&#xff1a;桥接模式NAT&#xff1a;网络地址转换模式Host-Only &#xff1a;仅主机模式 VMWare 网络连接配置界面如下&#xff1a; 在本次测试环境中&a…

IDEA连接不同种类数据库

首先添加驱动 到了添加页面后&#xff0c;引入驱动jar包 添加URL样版&#xff08;我这来添加的是瀚高数据库&#xff0c;Key-Value&#xff09;也可以看上图中URL Templates Key&#xff1a;default Value&#xff1a;jdbc:highgo://{host::localhost}?[:{port::5866}][/{data…

测试实项中的偶必现难测bug--<pre>标签问题

问题描述: 用户从网上copy的简介信息可能带有<pre>标签,导致安卓上的内容只能一行滑动展示,但是ios有对这个标签做特殊处理: 分析: <pre> 标签是 HTML 中用于表示预格式化文本的标签,它的作用是保留文本中的空格、换行和缩进。它的全称是 preformatted text…

Pencils Protocol 上线新板块 Auction,生态版图进一步完善

Pencils Protocol 上线了又一新产品板块 Auction&#xff0c;预示着生态版图的进一步完善&#xff0c;该板块的推出无论是对于 Pencils Protocol 协议本身&#xff0c;还是 Scroll 生态都是极为重要的。 社区正在成为主导加密市场发展的重要力量 自 DeFi Summer 以来&#xff…

人才流失预测模型(机器学习)

1. 项目描述 ​ 企业的快速发展离不开人才的支撑&#xff0c;可是现在我国的企业的人才流失严重&#xff0c;人才流失问题现在已经成为了关系企业发展的一个重大的问题。这些企业要想在目前激烈的竞争中快速发展&#xff0c;就需要依靠自身的人力资源的来竞争。只有拥有比对方…

掌握核密度图:精准描绘不同年龄段的血糖分布

在医学研究中&#xff0c;数据的可视化是理解复杂信息和做出科学决策的关键。今天&#xff0c;我们将深入探讨一种强大的数据可视化工具——核密度图&#xff08;Kernel Density Plot&#xff0c;简称KDE&#xff09;&#xff0c;并通过Python代码实例&#xff0c;展示如何基于…