量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据

19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。

接下来聊聊基于A股API获取交易数据。

在开发 A 股自动化交易系统时,交易数据(Trade Ticks)是进行市场分析、捕捉市场趋势、识别买卖力量的重要基础数据。A 股的交易数据包含每笔成交的详细信息,例如成交时间、成交价格、成交量和交易方向等,能够帮助投资者了解市场的微观结构并制定交易策略。以下是通过 Python 编写的代码示例,利用 A 股常用的公开 API(如东方财富、腾讯、网易等)获取交易数据的详细开发内容。

1. 使用东方财富 API 获取交易数据

东方财富提供了较为全面的 A 股数据接口,可以通过 HTTP 请求获取股票的实时交易数据(成交明细)。下面的代码示例展示了如何通过 Python 调用东方财富的 API 获取 A 股的交易数据。

import requests
import pandas as pd
import datetimedef get_eastmoney_trades(stock_code, market_type='0', limit=100):"""获取东方财富 A 股的交易数据。:param stock_code: 股票代码,例如 '600519' 表示贵州茅台:param market_type: 市场类型,'0' 表示沪市,'1' 表示深市:param limit: 获取交易数据的数量:return: 交易数据的 pandas DataFrame"""url = f"http://push2.eastmoney.com/api/qt/stock/details/get"params = {"secid": f"{market_type}.{stock_code}","fields1": "f1,f2,f3,f4,f5","fields2": "f51,f52,f53,f54,f55","pos": "-1","lmt": limit,}response = requests.get(url, params=params)if response.status_code == 200:data = response.json()trades = data.get("data", {}).get("details", [])trade_list = [trade.split(",") for trade in trades]df = pd.DataFrame(trade_list, columns=["时间", "成交价格", "成交量", "买卖方向", "成交金额"])return dfelse:raise Exception(f"Error fetching trade data: {response.status_code}")# 获取贵州茅台(600519)的最近 100 笔交易数据
df_trades = get_eastmoney_trades("600519")
print(df_trades)

在这个示例中,通过调用东方财富的 API,获取了指定股票代码的交易数据。market_type 用于指定是沪市还是深市,返回的数据被转换为 Pandas 的 DataFrame 格式,包含每笔成交的时间、成交价格、成交量、买卖方向等信息,以便后续的数据分析与处理。

2. 使用腾讯 API 获取交易数据

腾讯财经也提供了 A 股的实时交易数据接口,通过 HTTP 请求可以方便地获取 A 股的逐笔交易数据。以下是使用腾讯 API 获取 A 股交易数据的代码示例:

import requests
import pandas as pddef get_tencent_trades(stock_code, market='sh', limit=100):"""获取腾讯 A 股的交易数据。:param stock_code: 股票代码,例如 '600519':param market: 市场类型,'sh' 表示沪市,'sz' 表示深市:param limit: 获取交易数据的数量:return: 交易数据的 pandas DataFrame"""url = f"https://web.ifzq.gtimg.cn/appstock/app/hq/trade/get"params = {"code": f"{market}{stock_code}",}response = requests.get(url, params=params)if response.status_code == 200:data = response.json()trades = data.get("data", {}).get("tradelist", [])df = pd.DataFrame(trades, columns=["时间", "价格", "成交量", "方向"])return df.head(limit)else:raise Exception(f"Error fetching trade data: {response.status_code}")# 获取贵州茅台(600519)的最近 100 笔交易数据
df_trades_tencent = get_tencent_trades("600519")
print(df_trades_tencent)

在该示例中,通过调用腾讯 API,可以获取到指定交易对的逐笔交易数据。交易数据包含了时间、成交价格、成交量和买卖方向等信息,这些数据同样被转换为 Pandas 的 DataFrame 格式,方便后续的处理。

3. 交易数据的存储与处理

交易数据的存储和管理是交易系统的核心,特别是在进行策略分析和回测时,需要高效地访问和处理大量的交易数据。

  • 内存缓存:对于实时性要求较高的数据,可以使用 Redis 这样的内存数据库进行缓存,以加快数据的读写速度。这种方式适用于高频交易策略,实时读取最新的交易数据进行策略决策。

  • 持久化存储:对于逐笔交易数据,建议使用关系型数据库(如 MySQL)或 NoSQL 数据库(如 MongoDB)进行持久化存储。MySQL 可以方便地存储结构化的交易数据,而 MongoDB 更适合存储灵活性较高的非结构化数据。以下是将交易数据保存到 MySQL 的代码示例:

    import mysql.connectordef save_trades_to_mysql(df, stock_code):"""将交易数据保存到 MySQL 数据库中。:param df: 交易数据 DataFrame:param stock_code: 股票代码"""connection = mysql.connector.connect(host="localhost",user="root",password="password",database="stock_data")cursor = connection.cursor()create_table_query = f"""CREATE TABLE IF NOT EXISTS trades_{stock_code} (时间 VARCHAR(20),成交价格 FLOAT,成交量 INT,方向 VARCHAR(10))"""cursor.execute(create_table_query)for _, row in df.iterrows():insert_query = f"""INSERT INTO trades_{stock_code} (时间, 成交价格, 成交量, 方向)VALUES ('{row['时间']}', {row['价格']}, {row['成交量']}, '{row['方向']}')"""cursor.execute(insert_query)connection.commit()cursor.close()connection.close()# 将交易数据保存到 MySQL 数据库
    save_trades_to_mysql(df_trades_tencent, "600519")
4. 错误处理与重试机制

在获取交易数据时,由于网络不稳定或 API 限制,可能会导致请求失败。因此,在开发中需要加入有效的错误处理和重试机制。

  • 网络错误处理:通过 try...except 结构捕获网络请求中的错误,例如网络连接超时或数据请求失败,并根据具体的异常类型做出不同的处理。

    try:df_trades = get_eastmoney_trades("600519")
    except Exception as e:print(f"Error fetching trade data: {e}")
  • 重试机制:对于临时的网络问题,可以设置重试机制,在请求失败时重新尝试。例如,可以设置每次重试间隔逐步增加,避免在短时间内频繁请求服务器,减轻服务器的负担。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/471058.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习在医疗健康领域的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 机器学习在医疗健康领域的应用 机器学习在医疗健康领域的应用 机器学习在医疗健康领域的应用 引言 机器学习概述 定义与原理 发展…

学法减分交管12123模拟练习小程序源码前端和后端和搭建教程

交管推出个学法减分,每个驾驶员可以把被扣的6分,以看视频答题的形式学习回来,然后答题这个一共二十道题每道题60秒,有好多人不会,用咱们的小程序就可以模拟练习强化练习,还有拍照识别题目找到正确答案&…

AI大模型开发架构设计(18)——基于大模型构建企业知识库案例实战

文章目录 1 LLM 大模型在工作中的实际应用以及局限性LLM 大模型工作中实际应用大模型2点局限性 2 基于大模型和向量数据库的企业级知识库架构剖析向量数据库向量数据库选型知识库文档检索增强(Retrieval Augmented Generation)向量数据库应用技术总体架构向量数据库应用离线索引…

jmeter介绍、使用方法、性能测试、现参数化和数据驱动、分布式测试、压力测试、接口测试

目录 1.JMeter的组件介绍 2.JMeter介绍和使用方法 3.使用JMeter进行性能测试 4.JMeter如何实现参数化和数据驱动 5.使用JMeter进行分布式测试 6.使用JMeter完成压力测试 7.使用JMeter完成接口测试 下载并安装JMeter:从官方网站(https://jmeter.ap…

Zotero 6.0 安装包及安装教程

Zotero的界面友好,操作简单,对于科研小白来说,是一款非常实用的文献管理软件。它不仅可以帮助用户精确获取、整理、引用文献,而且在学术实践中不可或缺的一环。 安 装 步 骤 压缩包文件,鼠标右击解压得到安装包。 仅用…

Docker 篇-Docker 详细安装、了解和使用 Docker 核心功能(数据卷、自定义镜像 Dockerfile、网络)

🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 Docker 概述 1.1 Docker 主要组成部分 1.2 Docker 安装 2.0 Docker 常见命令 2.1 常见的命令介绍 2.2 常见的命令演示 3.0 数据卷 3.1 数据卷常见的命令 3.2 常见…

华为大变革?仓颉编程语言会代替ArkTS吗?

在华为鸿蒙生态系统中,编程语言的选择一直是开发者关注的焦点。近期,华为推出了自研的通用编程语言——仓颉编程语言,这引发了关于仓颉是否会取代ArkTS的讨论。本文将从多个角度分析这两种语言的特点、应用场景及未来趋势,探讨仓颉…

随时随地编码:香橙派Zero3上安装Code Server远程开发指南

文章目录 前言1. 添加镜像源2. 部署Code server3. 安装内网穿透工具4. 配置公网地址5. 配置固定公网地址 前言 本文主要介绍如何在刷了CasaOS轻NAS系统的香橙派Orange Pi Zero3中,使用Docker本地部署Code server,并结合cpolar内网穿透实现远程使用浏览器…

npm list @types/node 命令用于列出当前项目中 @types/node 包及其依赖关系

文章目录 作用示例常用选项示例命令注意事项 1、实战举例**解决方法**1. **锁定唯一的 types/node 版本**2. **清理依赖并重新安装**3. **设置 tsconfig.json 的 types**4. **验证 Promise 类型支持** **总结** npm list types/node 命令用于列出当前项目中 types/node 包及其…

第一个 Flutter 项目(1)共46节

前端开发工具vs code,安装Flutter sdk,如果你的下载速度比较慢,可以选择这个😄 flutter sdk 解压码:stwq 配置可以看这Flutter 新建工程一直等待 解决办法-CSDN博客 如果你是新的 Flutter 开发者,我们建…

比ChatGPT更酷的AI工具

相较于寻找比ChatGPT更酷的AI工具,这听起来似乎是个挑战,因为ChatGPT已经以它强大的综合性能在AI界大名鼎鼎。然而,每个工具都有其独特的优势,特别是在特定的应用场景下,其他AI工具可能会展现出与ChatGPT不同的魅力。接…

【自用】0-1背包问题与完全背包问题的Java实现

引言 背包问题是计算机科学领域的一个经典优化问题,分为多种类型,其中最常见的是0-1背包问题和完全背包问题。这两种问题的核心在于如何在有限的空间内最大化收益,但它们之间存在一些关键的区别:0-1背包问题允许每个物品只能选择…

今日 AI 简报 | 开源 RAG 文本分块库、AI代理自动化软件开发框架、多模态统一生成框架、在线图像背景移除等

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦! 🥦 微信公众号&#xff…

UniApp 应用、页面与组件的生命周期详解

UniApp 应用、页面与组件的生命周期详解 在uni-app中包含了 应用生命周期、页面生命周期、和组件生命周期&#xff08; Vue.js的&#xff09;函数。 应用生命周期 应用生命周期仅可在App.vue中监听&#xff0c;在其它页面监听无效。 <script>export default {onLaunc…

1111111111待修改--大流量分析(三)-BUUCTF

总结摘要 题目来来源URL https://buuoj.cn/challenges#%E5%A4%A7%E6%B5%81%E9%87%8F%E5%88%86%E6%9E%90%EF%BC%88%E4%B8%89%EF%BC%89 答题过程 这道题是看大佬写着说查找phpinfo&#xff0c;我现在也不知道为什么能够一下子就定位到这里了 这里先按照phpinfo进行&#xff…

PHP多门店医疗服务系统小程序源码

&#x1f3e5; 多门店医疗服务系统&#xff1a;打造全方位健康守护网络 &#x1f3e5; &#x1f3f7;️ 引言&#xff1a;为何需要多门店医疗服务系统&#xff1f; 在这个快节奏的时代&#xff0c;健康成为了我们最宝贵的财富。然而&#xff0c;面对突如其来的疾病或日常的健…

Jetpack 之 Ink API初探

前言 近期看到谷歌官方推文有一篇关于Jetpack Ink API的文章&#xff0c;随即进行了了解和研究&#xff0c;该SDK主要就是低延时的手写绘制&#xff0c;比如通过手指或者触控笔在安卓设备上面进行笔记记录或者在安卓设备上面进行素描之类类似于纸张上面的操作。当然了可能现在…

SpringBoot参数注解

SpringBoot参数注解 常用参数注解 RequestParmPathVariableRequestHeaderCookieValueRequestbody 1.请求参数注解&#xff1a;RequestParm 用途&#xff1a;用于将方法参数绑定到URI查询参数或者表单参数。他可以帮助我们或者HTTP请求中的参数值并将其作为方法的参数进行处…

HarmonyOS的@State装饰器的底层实现

HarmonyOS的State装饰器的底层实现 序言准备工作实现State装饰器 序言 ArkTS是鸿蒙生态的应用开发语言。它在保持TypeScript&#xff08;简称TS&#xff09;基本语法风格的基础上&#xff0c;进一步通过规范强化静态检查和分析&#xff0c;使得在程序运行之前的开发期能检测更…

C语言 | Leetcode C语言题解之第557题反转字符串中的单词III

题目&#xff1a; 题解&#xff1a; char* reverseWords(char* s) {int length strlen(s);char* ret (char*)malloc(sizeof(char) * (length 1));ret[length] 0;int i 0;while (i < length) {int start i;while (i < length && s[i] ! ) {i;}for (int p …