深度学习中的Pixel Shuffle和Pixel Unshuffle:图像超分辨率的秘密武器

在深度学习的计算机视觉任务中,提升图像分辨率和压缩特征图是重要需求。Pixel Shuffle和Pixel Unshuffle是在超分辨率、图像生成等任务中常用的操作,能够通过转换空间维度和通道维度来优化图像特征表示。本篇文章将深入介绍这两种操作的原理,并结合PyTorch实现可视化展示,希望能帮助大家更好地理解他们的用途与效果。

为什么需要Pixel Shuffle和Pixel Unshuffle

Pixel Shuffle是一种从特征图中提取空间信息的方法,主要应用于图像超分辨率等任务。超分辨率(Super-Resolution,SR)指的是通过机器学习算法生成比输入分辨率更好的图像。Pixel Shuffle操作可以帮助模型通过减少通道数、扩大空间分辨率来重建出更精细的图像。这不仅有效提升了模型的效果,还在一定程度上降低了计算成本。

相对应地,Pixel Unshuffle是Pixel Shuffle的逆操作,将空间维度重新映射回通道维度,这在特征压缩和编码解码任务中非常有用。

Pixel Shuffle和Pixel Unshuffle的原理解释及代码示例

Pixel Shuffle的工作原理

Pixel Shuffle是一种将通道维度转换为空间维度的操作,用于将特征图从较低的空间分辨率上采样到较高的分辨率。它的基本工作过程如下:

假设输入特征图的维度是 C × H × W C×H×W C×H×W,我们希望将其上采样到更高的空间分辨率 r H × r W rH×rW rH×rW,其中 r r r是放大倍率。Pixel Shuffle的操作步骤如下:

  1. 分解通道数:将特征图通道 C C C分解为 C ′ = C r 2 C'=\frac{C}{r^2} C=r2C,其中 C ′ C' C是新的通道数。
  2. 增加空间维度:将输入特征图的维度从 C × H × W C×H×W C×H×W变为 C ′ × r × r × H × W C'×r×r×H×W C×r×r×H×W,其中 r × r r×r r×r是每个通道中的小块大小。
  3. 重排特征图:将 r × r r×r r×r的小块移动到空间维度上,形成一个大小为 C ′ × r H × r W C'×rH×rW C×rH×rW的特征图。

通过上述过程,Pixel Shuffle可以将特征图的空间分辨率从 H × W H×W H×W放大到 r H × r W rH×rW rH×rW,同时减少通道数。

示例

假设输入特征图的维度是 4 × 2 × 2 4×2×2 4×2×2,我们希望放大2倍,即将分辨率换成 4 × 4 4×4 4×4。Pixel Shuffle操作过程如下:

  • 原始特征图 4 × 2 × 2 4×2×2 4×2×2
  • 分解通道数 4 4 4通道分解为 1 1 1通道的小块,即 1 × 2 × 2 × 2 × 2 1×2×2×2×2 1×2×2×2×2
  • 重排特征图:重排为 1 × 4 × 4 1×4×4 1×4×4的特征图。

这个过程相当于将每个通道中的像素块分配到更大的空间位置,从而实现高效的上采样操作。

代码示例

在PyTorch中,我们可以使用torch.nn.PixelShuffle来实现。以下是一个代码示例,展示如何在PyTorch中应用Pixel Shuffle。

import torch
import torch.nn as nn# 创建一个示例张量
x = torch.randn(1, 4, 2, 2)  # 输入形状 (batch, channels, height, width)# Pixel Shuffle 操作,使用上采样因子 2
pixel_shuffle = nn.PixelShuffle(2)
y = pixel_shuffle(x)print(f"输入形状: {x.shape}, 输出形状: {y.shape}")
# 输入形状: torch.Size([1, 4, 2, 2]), 输出形状: torch.Size([1, 1, 4, 4]) 

在这段代码,我们创建了一个形状为(1,4,2,2)的示例张量,将其通过Pixel Shuffle转换成形状为(1,1,4,4)的张量。这里的(2)是上采样因子,代表输出空间维度扩大2倍,而通道数被缩小为 2 2 2^2 22倍,即将4个通道转换为更大的空间维度,使得高分辨率图像生成称为可能。通过这种方式,网络可以利用更多的控价信息,生成更高质量的图像。

Pixel Unshuffle的工作原理

Pixel Unshuffle 是 Pixel Shuffle 的逆操作,用于将特征图从较高的空间分辨率下采样到较低的分辨率,将空间维度的高频信息重新映射回通道中。这种操作在编码解码模型(将高分辨率图像重新映射回多通道低分辨率特征图)、图像压缩等任务中非常实用。

假设输入特征图的维度是 C ′ × r H × r W C'×rH×rW C×rH×rW,我们希望将其下采样至 C × H × W C×H×W C×H×W的特征图。Pixel Unshuffle 的具体操作步骤如下:

  1. 分解空间维度:将输入特征图的空间维度 r H × r W rH×rW rH×rW 分解为 H × W H×W H×W 和每个位置的小块大小 r × r r×r r×r
  2. 增加通道数:将特征图的维度从 C ′ × r H × r W C'×rH×rW C×rH×rW 变为 C × H × W C×H×W C×H×W,其中 C = C ′ × r 2 C=C'×r^2 C=C×r2,即原始通道数。
  3. 重排通道:将空间维度的 r × r r×r r×r 小块重新映射到通道维度中,从而实现特征的压缩。

通过上述步骤,Pixel Unshuffle 将空间信息压缩回通道中,实现了图像特征的有效下采样。

示例

假设输入特征图的维度是 1 × 4 × 4 1×4×4 1×4×4,希望将其下采样到 4 4 4 通道,尺寸为 2 × 2 2×2 2×2。Pixel Unshuffle 的操作过程如下:

  • 原始特征图 1 × 4 × 4 1×4×4 1×4×4
  • 分解空间维度:将空间维度 4 × 4 4×4 4×4 分解为 2 × 2 2×2 2×2 2 × 2 2×2 2×2的小块
  • 增加通道数:将特征图的维度变为 4 × 2 × 2 4×2×2 4×2×2

这个过程相当于将空间中的信息“压缩”到通道中,从而获得较低分辨率但信息密集的特征图。

代码示例

以下代码展示了如何用Pixel Unshuffle恢复特征图

import torch
import torch.nn.functional as F# 假设 y (1,1,4,4)是 Pixel Shuffle 的输出
x_reconstructed = F.pixel_unshuffle(y, 2)
print(f"重新构建后的形状: {x_reconstructed.shape}")
# 重新构建后的形状: torch.Size([1, 4, 2, 2])

在这个示例中,pixel_unshuffle将分辨率降回Pixel Shuffle之前的形状,将空间维度信息重映射回通道中,从而实现特征图的压缩。

可视化展示

为了能够更直观地展示Pixel Shuffle的效果,我们可以通过一张实际图片来演示。以下代码将读取一张图片,通过Pixel Shuffle操作后进行对比可视化,方便理解其在上采样中的效果。假设我们读取的图片为
DOG

import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as plt# 1. 读取图片并预处理
img_path = 'your_image_path.jpg'  # 替换为你的图片路径
image = Image.open(img_path).convert('RGB')# 2. 图像转换为张量,并调整形状以适应 Pixel Shuffle
transform = transforms.Compose([transforms.Resize((8, 8)),  # 调整为较小尺寸以便观察transforms.ToTensor()
])img_tensor = transform(image).unsqueeze(0)  # 增加 batch 维度# 3. 增加通道以便演示 Pixel Shuffle(例如转为 4 通道)
img_tensor = img_tensor.repeat(1, 4, 1, 1)  # 这里将通道数扩展到4# 4. 执行 Pixel Shuffle 操作
pixel_shuffle = nn.PixelShuffle(2)
img_shuffled = pixel_shuffle(img_tensor)# 5. 可视化原图与 Pixel Shuffle 后的图像
fig, axs = plt.subplots(1, 2, figsize=(10, 5))# 原图
axs[0].imshow(transforms.ToPILImage()(img_tensor.squeeze(0)[:3, :, :]))  # 只取前3个通道
axs[0].set_title("Original")# Pixel Shuffle 后的图
axs[1].imshow(transforms.ToPILImage()(img_shuffled.squeeze(0)[:3, :, :]))  # 只取前3个通道
axs[1].set_title("Pixel Shuffle")plt.show()

在这段代码中,我们读取一张图片并将其转换为张量格式,扩展通道数以符合 Pixel Shuffle 的输入要求。通过 Pixel Shuffle 操作,图像的空间分辨率增加,而通道数减少。经过代码处理后的结果为image-20241114093549088

可视化后可以清晰看到,Pixel Shuffle 操作有效地上采样了图片,使其更加细化并且包含更丰富的细节信息。

Pixel Shuffle 与 Pixel Unshuffle 的实际应用

在实际应用中,Pixel Shuffle 常用于超分辨率任务,例如在著名的 EDSR(Enhanced Deep Residual Networks for Single Image Super-Resolution)或 SRGAN(Super-Resolution Generative Adversarial Network)模型中,Pixel Shuffle 是提升图像质量的关键组件之一。Pixel Unshuffle 则适用于特征图压缩和编码场景,帮助模型更高效地处理高维特征。

总结

Pixel Shuffle:用于上采样,将通道维度转换为空间维度,提升图像分辨率。

Pixel Unshuffle:用于下采样,将空间维度转换为通道维度,降低图像分辨率进行特征压缩。

Pixel Shuffle 和 Pixel Unshuffle 通过在通道维度和空间维度之间进行信息重排,使得模型在不引入额外插值误差的情况下,实现高效的上采样和下采样操作。

参考文献

  1. Shi, Wenzhe, et al. “Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016): 1874-1883.
  2. Yu, Jiahui, et al. “Wide Activation for Efficient and Accurate Image Super-Resolution.” arXiv preprint arXiv:1808.08718 (2018).
    (2016): 1874-1883.
  3. Yu, Jiahui, et al. “Wide Activation for Efficient and Accurate Image Super-Resolution.” arXiv preprint arXiv:1808.08718 (2018).
  4. Lim, Bee, et al. “Enhanced Deep Residual Networks for Single Image Super-Resolution.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017): 136-144.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/472961.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阮一峰科技爱好者周刊(第 325 期)推荐工具:一个基于 Next.js 的博客和 CMS 系统

近期,阮一峰在科技爱好者周刊第 325 期中推荐了一款开源工具——ReactPress,ReactPress一个基于 Next.js 的博客和 CMS 系统,可查看 demo站点。(fecommunity 投稿) ReactPress:一款值得推荐的开源发布平台 …

Amazon Web Services (AWS)

一、Amazon Web Services (AWS)介绍 1、简介 2、产品 AWS 提供了各种云计算服务,包括 DynamoDB、S3、EC2、Lambda 等等。 登录aws后点击所有服务也可以看到amazon的所有服务: 3、免费试用产品 除了免费的Amazon Step Functions、Amazon Lambda&#…

rk3399开发环境使用Android 10初体验蓝牙功能

版本 日期 作者 变更表述 1.0 2024/11/10 于忠军 文档创建 零. 前言 由于Bluedroid的介绍文档有限,以及对Android的一些基本的知识需要了(Android 四大组件/AIDL/Framework/Binder机制/JNI/HIDL等),加上需要掌握的语言包括Java/C/C等&#xff0…

Redis实战案例(黑马点评)

List item Redis实战案例(黑马点评) 一、短信登录 tomcat的运行原理: 当用户发起请求时,会访问tomcat注册的端口,任何程序想要运行,都需要有一个线程对当前端口号进行监听,当用户和tomcat连…

每行数据个数在变的二维数组的输出

#include<stdio.h> int main() {//定义四个一维数组int arr1[1] { 1 };int arr2[3] { 1,2,3 };int arr3[5] { 1,2,3,4,5 };int arr4[7] { 1,2,3,4,5,6,7 };//把四个一维数组放进一个二维数组int* arr[4] { arr1,arr2,arr3,arr4};//预先计算好每一个数组真实的长度in…

IPv6 NDP 记录

NDP&#xff08;Neighbor Discovery Protocol&#xff0c;邻居发现协议&#xff09; 是 IPv6 的一个关键协议&#xff0c;它组合了 IPv4 中的 ARP、ICMP 路由器发现和 ICMP 重定向等协议&#xff0c;并对它们作出了改进。该协议使用 ICMPv6 协议实现&#xff0c;作为 IPv6 的基…

MySQL数据库:SQL语言入门 【2】(学习笔记)

目录 2&#xff0c;DML —— 数据操作语言&#xff08;Data Manipulation Language&#xff09; &#xff08;1&#xff09;insert 增加 数据 &#xff08;2&#xff09;delete 删除 数据 truncate 删除表和数据&#xff0c;再创建一个新表 &#xff08;3&#xf…

第二十一周机器学习笔记:动手深度学习之——数据操作、数据预处理

第二十周周报 摘要Abstract一、动手深度学习1. 数据操作1.1 数据基本操作1.2 数据运算1.2.1 广播机制 1.3 索引和切片 2. 数据预处理 二、复习RNN与LSTM1. Recurrent Neural Network&#xff08;RNN&#xff0c;循环神经网络&#xff09;1.1 词汇vector的编码方式1.2 RNN的变形…

购物车demo全代码-对接支付宝沙箱环境

创建项目 vue create alipay-demoAlipayDemo.vue <template><div class"cart-container"><h2>商品列表</h2><table class"product-table"><tr><th>商品</th><th>价格</th><th>商品描…

【CANOE】【学习】【DecodeString】字节转为中文字符输出

系列文章目录 文章目录 系列文章目录前言一、DecodeString 转为中文字节输出二、代码举例1.代码Demo2.DecodeString 函数说明函数语法&#xff1a;参数说明&#xff1a;返回值&#xff1a;使用示例&#xff1a;示例代码&#xff1a; 说明&#xff1a; 前言 有时候使用的时候&a…

超全超详细使用SAM进行高效图像分割标注(GPU加速推理)

一、前言 &#x1f449; 在计算机视觉任务中&#xff0c;图像分割 是重要的基础工作&#xff0c;但人工标注往往耗时耗力。Meta推出的 SAM&#xff08;Segment Anything Model&#xff09;&#xff0c;大幅提升了分割效率和精度&#xff0c;让标注工作更加轻松。本篇博客将详细…

JavaEE 重要的API阅读

JavaEE API阅读 目的是为了应对学校考试&#xff0c;主要关注的是类的继承关系、抛出错误的类型、包名、包结构等等知识。此帖用于记录。 PageContext抽象类 包名及继承关系 继承自JspContext类。PageContext 实例提供对与某个 JSP 页⾯关联的所有名称空间的访问&#xff0…

【Python · PyTorch】卷积神经网络(基础概念)

【Python PyTorch】卷积神经网络 CNN&#xff08;基础概念&#xff09; 0. 生物学相似性1. 概念1.1 定义1.2 优势1.2.1 权重共享1.2.2 局部连接1.2.3 层次结构 1.3 结构1.4 数据预处理1.4.1 标签编码① One-Hot编码 / 独热编码② Word Embedding / 词嵌入 1.4.2 归一化① Min-…

Python爬虫----python爬虫基础

一、python爬虫基础-爬虫简介 1、现实生活中实际爬虫有哪些&#xff1f; 2、什么是网络爬虫&#xff1f; 3、什么是通用爬虫和聚焦爬虫&#xff1f; 4、为什么要用python写爬虫程序 5、环境和工具 二、python爬虫基础-http协议和chrome抓包工具 1、什么是http和https协议…

Python学习笔记(2)正则表达式

正则表达式是一个特殊的字符序列&#xff0c;它能帮助你方便的检查一个字符串是否与某种模式匹配。 在 Python 中&#xff0c;使用 re 模块提供的函数来处理正则表达式&#xff0c;允许你在字符串中进行模式匹配、搜索和替换操作。 1 正则表达式 正则表达式(Regular Expressi…

整数唯一分解定理

整数唯一分解定理&#xff0c;也称为算术基本定理&#xff0c;是由德国数学家高斯在其著作《算术研究》中首次提出的。本文回顾整数唯一分解定理以及对应的几个重要结论。 一、整数唯一分解定理 整数唯一分解定理&#xff0c;也称为算术基本定理&#xff0c;是数论中的一个重…

小版本大不同 | Navicat 17 新增 TiDB 功能

近日&#xff0c;Navicat 17 迎来了小版本更新。此次版本新增了对 PingCap 公司的 TiDB 开源分布式关系型数据库的支持&#xff0c;进一步拓展了 Navicat 的兼容边界。即日起&#xff0c;Navicat 17 所有用户可免费升级至最新版本&#xff0c;通过 Navicat 工具实现 TiDB 数据库…

【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)

#IEEE出版|EI稳定检索#主讲嘉宾阵容强大&#xff01;多位外籍专家出席报告 2024健康大数据与智能医疗国际会议&#xff08;ICHIH 2024&#xff09;2024 International Conference on Health Big Data and Intelligent Healthcare 会议简介 2024健康大数据与智能医疗国际会议…

ADS项目笔记 1. 低噪声放大器LNA天线一体化设计

在传统射频结构的设计中&#xff0c;天线模块和有源电路部分相互分离&#xff0c;两者之间通过 50 Ω 传输线级联&#xff0c;这种设计需要在有源电路和天线之间建立无源网络&#xff0c;包括天线模块的输入匹配网络以及有源电路的匹配网络。这些无源网络不仅增加了系统的插入损…

客厅打苍蝇fly测试总结1116

项目介绍:本项目是关系食品安全重大项目&#xff0c;针对屋子里有苍蝇的问题&#xff0c;通过分析苍蝇特性及对场景分类&#xff0c;设计测试用例16条&#xff0c;有效击杀苍蝇17头&#xff0c;房间里面已经看不到苍蝇的活动痕迹。比较传统蚊拍击打容易在物体表面形成难看且赃的…