初识Linux · 信号处理 · 续

目录

前言:

可重入函数

重谈进程等待和优化


前言:

在前文,我们已经介绍了信号产生,信号保存,信号处理的主题内容,本文作为信号处理的续篇,主要是介绍一些不那么重要的内容,第一个点是可重入函数,第二个点是在信号处理这里的进程等待。

那么话不多说,我们进入主题吧!


可重入函数

大家对于链表的增删查改已经是什么熟悉了吧?在Linux中,如果我们有一个链表,我们要对链表执行的操作是insert,那么从main函数进去之后,进行p->next这步的时候突然进行信号捕捉的话,这里肯定有人会有疑问的了,为什么会进行信号捕捉呢

如果是这个进程的时间片到了呢?OS要调度其他的进程了,那么从用户态转到了内核态,此时进行信号的捕捉,所以捕捉到了信号,就又会插入节点,原本插入的节点是Node1的,这下多出来了一个Node2节点,可是我们甚至没有办法去调用node2节点,这造成的问题是什么呢?

造成的问题是十分严重的,即内存泄漏

那么这种函数,会造成内存泄漏,或者说是涉及到了共享资源的,比如堆的开辟,比如全局变量,比如静态变量都是共享的,涉及到了以上共享资源的函数,就不满足可重入性

那么我们应该如何实现具备可重入性的函数呢?

  1. 不使用全局或静态变量:因为全局或静态变量是共享的,多个线程同时访问可能会导致数据不一致。如果必须使用,则必须通过适当的同步机制(如互斥锁)来保护这些变量。

  2. 不调用不可重入的函数:如果一个函数调用了另一个不可重入的函数,那么它本身也会变成不可重入的。

  3. 不返回指向静态分配的内存的指针:因为这可能导致多个线程返回相同的指针,从而访问和修改相同的内存区域。

  4. 不使用任何依赖于特定线程环境的资源:例如,某些I/O操作(如标准输入/输出)可能依赖于特定的线程环境,如果它们不是线程安全的,那么调用这些操作的函数就不是可重入的。

其实方式很简单,我们只需要保证该函数没有使用共享资源即可,反例是stl里面的容器,几乎所有的容器都涉及到了堆上的开辟,比如扩容等操作,那么这些所有函数就不是可重入的。

这个点我们了解一下即可。


重谈进程等待和优化

有人好奇咯,这里明明介绍的是信号,和进程等待有什么关系呢?这里更厉害的其实还有涉及到了编译器的优化方面,并且编译器优化也分为了几个层次,我们先从进程等待入手。

我们先看一段代码:

int gflag = 0;void changedata(int signo)
{std::cout << "get a signo:" << signo << ", change gflag 0->1" << std::endl;gflag = 1;
}int main() // 没有任何代码对gflag进行修改!!!
{signal(2, changedata);while(!gflag); // while不要其他代码std::cout << "process quit normal" << std::endl;
}

可以发现发送2号信号之后,发现gflag确实是从0变成了1,不然while循环也是不能结束的。

好了,现在我们来谈谈编译器优化的问题,在C++里,连续的拷贝构造 + 构造,编译器是直接会优化成直接构造的,这个我们是十分清楚的。

那么,g++也是个编译器吧?它也会进行相应的优化,我们先man一下g++:

这一行代表的优化成都,默认的优化是O0,我们也可以在编译的时候修改优化程度,可是我们光是知道优化是没有用的,我们还需要介绍一下上面代码的硬件部分知识:

对于cpu来说,它执行的运算一般是分为逻辑运算和算数运算的,对于上面while里面的判断,执行的就是逻辑运算,不管是哪种运算,将值放到寄存器的时候,都是从物理内存里面放吧?

好,现在是cpu从物理内存里面得到对应的数据,当然这个过程是由OS来完成的,那么,每次都要从物理内存拿这个数据是不是有点麻烦OS了?所以编译器在这里如果开了优化,那么就不让cpu从物理内存里面获取gflag的值了,直接就让cpu从寄存器里面获取,也就是说,从运行函数开始,寄存器里面只有一个值,也就是第一次while判断里的gflag的值,那么也就代表,我们即便是修改了gflag的值,cpu也不知道,因为它只从寄存器里面读取:

将对应的makefile修改一下,然后我们试试:

发现的现象是,嘿!退不出去了,也就印证了编译器在这里的优化。

这种现象叫做没有保持内存的可见性。

那么我们如何保持内存的可见性呢?很简单,只需要用到一个关键字就可以了,volatile即可,这个在const部分我们也有使用该国,这里加一个关键字的事儿,所以就不过多演示了。


好了,现在我们来谈谈进程的等待。

我们知道,父进程一般是会等待子进程的吧?并且父进程要收集子进程的退出信息吧?

可是父进程怎么知道子进程什么时候退出呢?

实际上,子进程退出的时候,是会给父进程发送相关信号的,该信号是SIGCHLD:

该信号是对应的17号信号。

默认的行为其实是Ign,也就是忽略的意思。

void notice(int signo)
{std::cout << "get a signal: " << signo << " pid: " << getpid() << std::endl;pid_t rid = waitpid(-1, nullptr, 0);if (rid > 0){std::cout << "wait child success, rid: " << rid << std::endl;}else if (rid < 0){std::cout << "wait child success done " << std::endl;}
}
void DoOtherThing()
{std::cout << "DoOtherThing~" << std::endl;
}
int main()
{signal(SIGCHLD, notice);pid_t id = fork();if (id == 0){std::cout << "I am child process, pid: " << getpid() << std::endl;sleep(3);exit(1);}// fatherwhile (true){DoOtherThing();sleep(1);}return 0;
}

对于上面的代码是我们信号处理部分熟知的,我们通过这个代码,验证了子进程退出的时候的的确确会发送17号信号,可是我们在信号处理的时候也知道了,信号如果还没有处理完,是会自动屏蔽当前多出来的信号的,也就是我们创建多个子进程的事儿:

    for (int i = 0; i < 10; i++){pid_t id = fork();if (id == 0){std::cout << "I am child process, pid: " << getpid() << std::endl;sleep(3);exit(1);}}

做了以上的修改之后,我们发现:

创建子进程之后,父进程等待子进程是一个一个等待的,这也验证了之前所说的,信号被屏蔽之后,会继续处理被屏蔽的信号。

那么,你说有没有进程是一直不退出的呢?如果创建了一个永远不退出的子进程怎么办?假设这里存在5个要退出的子进程,5个不知道是否退出的子进程,难道父进程要一个一个的问你是否要退出吗?

这是不现实的,如果父进程真的傻傻的去等待了,导致的结果就是两个进程永远退出不了,只能被系统回收。因为造成了阻塞,所以,我们可以将等待方式设置一下,变成非阻塞等待:

void notice(int signo)
{std::cout << "get a signal: " << signo << " pid: " << getpid() << std::endl;while (true){pid_t rid = waitpid(-1, nullptr, WNOHANG); // 阻塞啦!!--> 非阻塞方式if (rid > 0){std::cout << "wait child success, rid: " << rid << std::endl;}else if (rid < 0){std::cout << "wait child success done " << std::endl;break;}else{std::cout << "wait child success done " << std::endl;break;}}
}

并且,当我们对于17号信号设置成了忽略,子进程也不会出现僵尸问题了。

以上是对于信号处理的补充。


感谢阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/473971.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IPTV智慧云桌面,后台服务器搭建笔记

环境CentOs7.9 &#xff0c;安装宝塔yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh 访问宝塔&#xff0c;修改服务器端口安全组端口 26029 注意&#xff01;&#xff01;&#xff01;&#xff01…

模型的评估指标——IoU、混淆矩阵、Precision、Recall、P-R曲线、F1-score、mAP、AP、AUC-ROC

文章目录 预测框的预测指标——IoU&#xff08;交并比&#xff09;分类预测指标混淆矩阵&#xff08;Confusion Matrix&#xff0c;TP、FP、FN、TN)Precision&#xff08;精度&#xff09;Recall&#xff08;召回率&#xff09;P-R曲线F1-scoreTPR、TNR、FPR、FNRROC曲线下面积…

本草智控:中药实验管理的智能时代

3系统分析 3.1可行性分析 通过对本中药实验管理系统实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本中药实验管理系统采用SSM框架&#xff0c;JAVA作为开发语…

父组件提交时让各自的子组件验证表格是否填写完整

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 父组件中有三个表格&#xff0c;表格中时输入框&#xff0c;有些输入框是必填的&#xff0c;在父组件提交时需要验证这三个表格的必填输入框中是否有没填写的。 原因分析&#xff1a; 提示&#xff1a…

嘴尚绝卤味独特的口感

在餐饮行业里&#xff0c;嘴尚绝卤味无疑是一颗璀璨的明星。自2021年8月7日创立以来&#xff0c;这个品牌就以其独特的口感和制作工艺赢得了众多食客的青睐。嘴尚绝卤味&#xff0c;作为四川优优熊猫餐饮管理有限公司旗下的主打品牌&#xff0c;专注于提供高品质的休闲佐食&…

JDK17 安装使用

一、Java JDK&#xff08;Java Development Kit&#xff09; 它是开发、运行Java应用程序所需的各种工具和库的集合。 二、JDK 1.8&#xff08;也称为Java 8&#xff09;和JDK 17是两个重要的版本 这两个版本在语言特性、性能优化和安全性方面都有所不同。 1、语言特性 …

解决Ubuntu18.04及以上版本高分辨率下导致字体过小问题

解决Ubuntu18.04及以上版本高分辨率下导致字体过小问题 Chapter1 解决Ubuntu18.04及以上版本高分辨率下导致字体过小问题 Chapter1 解决Ubuntu18.04及以上版本高分辨率下导致字体过小问题 目前使用的是三星4K显示屏&#xff0c;屏幕分辨率太高了&#xff0c;导致VMWare Workst…

uniapp 微信小程序地图标记点、聚合点/根据缩放重合点,根据缩放登记显示气泡marik标点

如图&#xff0c;如果要实现上方的效果&#xff1a; 上方两个效果根据经纬度标记点缩放后有重复点会添加数量 用到的文档地址https://developers.weixin.qq.com/miniprogram/dev/api/media/map/MapContext.addMarkers.htmlMapContext.addMarkers(Object object) 添加标记点Ma…

第6章详细设计 -6.7 PCB工程需求表单

6.7 PCB工程需求表单 PCB工程需求表是PCB设计的入口条件&#xff0c;以一块单板为例&#xff0c;表6.2所示的PCB工程需求表单明确了Signal Integrity&#xff08;SI&#xff0c;信号完整性&#xff09;和Power Integrity&#xff08;PI&#xff0c;电源完整性&#xff09;的要…

Spring 与 Spring MVC 与 Spring Boot三者之间的区别与联系

一.什么是Spring&#xff1f;它解决了什么问题&#xff1f; 1.1什么是Spring&#xff1f; Spring&#xff0c;一般指代的是Spring Framework 它是一个开源的应用程序框架&#xff0c;提供了一个简易的开发方式&#xff0c;通过这种开发方式&#xff0c;将避免那些可能致使代码…

重构Action-cli前端脚手架

一、概述 最近一年&#xff0c;为了满足公司业务开发&#xff0c;解决重复搭建项目繁琐过程&#xff0c;自己开发了一个前端脚手架&#xff0c;并发布到npm。随着时间的推移&#xff0c;发现之前的版本存在很多问题&#xff0c;有些功能做不到位&#xff0c;而且代码也不是很规…

Kotlin return与return@forEachIndexed

Kotlin return与returnforEachIndexed fun main() {val data arrayOf(0, 1, 2, 3, 4)println("a")data.forEachIndexed { index, v ->if (v 2) {//类似while循环中的continue//跳过&#xff0c;继续下一个forEachIndexed迭代returnforEachIndexed}println("…

Springboot基于GIS的旅游信息管理系统

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA/eclipse 数据…

《Django 5 By Example》阅读笔记:p645-p650

《Django 5 By Example》学习第8天&#xff0c;p645-p650总结&#xff0c;总计6页。 一、技术总结 1.django-rest-framework (1)serializer p648, Serializer: Provides serialization for normal Python class instances。Serializer又细分为Serializer, ModelSerializer,…

5个有效的华为(HUAWEI)手机数据恢复方法

5个有效的手机数据恢复方法 华为智能手机中的数据丢失比许多人认为的更为普遍。发生这种类型的丢失有多种不同的原因&#xff0c;因此数据恢复软件的重要性。您永远不知道您的智能手机何时会在这方面垮台&#xff1b;因此&#xff0c;预防总比哀叹好&#xff0c;这就是为什么众…

【微软:多模态基础模型】(4)统一视觉模型

欢迎关注[【youcans的AGI学习笔记】](https://blog.csdn.net/youcans/category_12244543.html&#xff09;原创作品 【微软&#xff1a;多模态基础模型】&#xff08;1&#xff09;从专家到通用助手 【微软&#xff1a;多模态基础模型】&#xff08;2&#xff09;视觉理解 【微…

鸿蒙网络编程系列48-仓颉版UDP回声服务器示例

1. UDP回声服务器简介 回声服务器指的是这样一种服务器&#xff0c;它接受客户端的连接&#xff0c;并且把收到的数据原样返回给客户端&#xff0c;本系列的第2篇文章《鸿蒙网络编程系列2-UDP回声服务器的实现》中基于ArkTS语言在API 9的环境下实现了UDP回声服务器&#xff0c…

微博短链接平台-项目测试用例设计(Xmind)

技术栈&#xff1a;Spring BootMyBatis-PlusRedisShardingSphereSentinel 项目描述&#xff1a;微博短链接平台&#xff0c;提供了一个高效、安全和可靠的短链接管理平台。完成较长链接转换为短链接场景。比 如&#xff0c;受微博发送博文长度限制&#xff0c;仅能发表150字&am…

前端基础(四十一):实时获取麦克风音量

效果 源码 <button id"open">打开麦克风</button> <button id"close">关闭麦克风</button><input id"range" type"range" min"0" max"100" value"0" />let _mediaStrea…

jmeter常用配置元件介绍总结之配置元件

系列文章目录 1.windows、linux安装jmeter及设置中文显示 2.jmeter常用配置元件介绍总结之安装插件 3.jmeter常用配置元件介绍总结之线程组 4.jmeter常用配置元件介绍总结之函数助手 5.jmeter常用配置元件介绍总结之取样器 6.jmeter常用配置元件介绍总结之jsr223执行pytho…