机器学习实战记录(1)

决策树——划分数据集

def splitDataSet(dataSet, axis, value):		retDataSet = []										#创建返回的数据集列表for featVec in dataSet: 							#遍历数据集if featVec[axis] == value:reducedFeatVec = featVec[:axis]				#去掉axis特征reducedFeatVec.extend(featVec[axis+1:]) 	#将符合条件的添加到返回的数据集retDataSet.append(reducedFeatVec)return retDataSet		  							#返回划分后的数据集

这个代码就是按axis划分,然后每次把它去掉。

1.

def splitDataSet(dataSet, axis, value):
  • dataSet:这是输入的数据集,通常是一个二维列表,其中每个子列表代表一个样本,最后一项通常是标签(分类)。
  • axis:这个参数是整数,表示当前划分的特征的索引位置。假设我们的数据集有多个特征(列),axis 就指定了你想要按哪一个特征来划分数据集。
  • value:这个参数是我们在数据集中按 axis 这个特征划分时,要求该特征的取值为 value。即:我们希望选择所有在此特征上值为 value 的样本。

返回的 retDataSet

retDataSet 是一个空列表,用来保存符合条件的子集。函数会遍历 dataSet,每次找到符合条件的样本(即特征 axis 的值为 value),就将该样本的特征信息(去掉当前特征)加入到 retDataSet

2.

retDataSet = []  # 创建返回的数据集列表

  • 创建一个空的列表 retDataSet,用来保存符合条件的子集。
 

python

复制代码

for featVec in dataSet: # 遍历数据集中的每一个样本

  • 使用 for 循环遍历 dataSet 中的每一行数据(每个 featVec)。每个 featVec 是一个样本,它包含多个特征值,通常最后一个元素是标签(类别)

if featVec[axis] == value:

  • 对于每一个样本 featVec,判断该样本的特征 axis 对应的取值是否等于 value。如果该样本在 axis 特征上的取值与 value 相等,就满足条件,应该将该样本加入返回的子集 retDataSet 中。

reducedFeatVec = featVec[:axis] # 去掉当前特征(axis)

  • 通过 featVec[:axis] 获取当前样本的特征,去掉 axis 位置的特征。比如,如果数据集中有5个特征(第0列到第4列),且 axis = 2,那么 featVec[:axis] 就是将样本中第2列之前的特征提取出来(不包括第2列),即 [featVec[0], featVec[1]]

reducedFeatVec.extend(featVec[axis+1:]) # 将符合条件的特征值部分加入返回的数据集

  • featVec[axis+1:] 表示去掉了 axis 位置的特征后的部分,即从 axis+1 到最后的特征。将这部分特征信息添加到 reducedFeatVec 中。extend 方法会将一个列表的元素加入到另一个列表中,确保 reducedFeatVec 包含了除了当前特征 axis 外的所有特征。

return retDataSet # 返回划分后的数据集

  • 最后,函数返回划分后的子集 retDataSet,它包含了所有在特定特征 axis 上取值为 value 的样本(每个样本去掉了 axis 特征)。

假设有如下数据集(dataSet):

dataSet = [['青年', '否', '否', '一般', '不放贷'],['青年', '否', '是', '好', '放贷'],['青年', '是', '否', '好', '放贷'],['青年', '是', '是', '一般', '不放贷'],['中年', '否', '否', '一般', '不放贷'],['中年', '否', '是', '好', '放贷'],['中年', '是', '否', '好', '放贷'],['中年', '是', '是', '一般', '不放贷'],['老年', '否', '否', '一般', '不放贷'],['老年', '否', '是', '好', '放贷'],['老年', '是', '否', '好', '放贷'],['老年', '是', '是', '一般', '不放贷']
]

假设我们希望根据第二个特征“是否有工作”(axis=1)进行划分,我们调用 splitDataSet 函数,并指定取值

result = splitDataSet(dataSet, 1, '否')

在这个例子中,axis=1 表示我们正在根据第二个特征(“是否有工作”)进行划分,value='否' 表示我们选择特征值为“否”的样本。调用 splitDataSet 函数后,返回的 result 是:

[['青年', '否', '否', '一般', '不放贷'],['青年', '否', '是', '好', '放贷'],['中年', '否', '否', '一般', '不放贷'],['中年', '否', '是', '好', '放贷'],['老年', '否', '否', '一般', '不放贷'],['老年', '否', '是', '好', '放贷']
]

这些样本的第二个特征都是“否”。可以看到,函数成功地将数据集按第二个特征值为“否”进行划分,且去除了“是否有工作”这一特征,返回了包含其余特征的子集。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/477491.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Excel的图表使用和导出准备

目的 导出Excel图表是很多软件要求的功能之一,那如何导出Excel图表呢?或者说如何使用Excel图表。 一种方法是软件生成图片,然后把图片写到Excel上,这种方式,因为格式种种原因,导出的图片不漂亮&#xff0c…

2024年亚太地区数学建模大赛A题-复杂场景下水下图像增强技术的研究

复杂场景下水下图像增强技术的研究 对于海洋勘探来说,清晰、高质量的水下图像是深海地形测量和海底资源调查的关键。然而,在复杂的水下环境中,由于光在水中传播过程中的吸收、散射等现象,导致图像质量下降,导致模糊、…

【数据分享】2024年我国省市县三级的住宿服务设施数量(8类住宿设施/Excel/Shp格式)

宾馆酒店、旅馆招待所等住宿服务设施的配置情况是一个城市公共基础设施完善程度的重要体现,一个城市住宿服务设施种类越丰富,数量越多,通常能表示这个城市的公共服务水平越高! 本次我们为大家带来的是我国各省份、各地级市、各区…

一文学习Android系统核心服务ServiceManager

ServiceManager 是 Android 系统中核心的系统服务注册与发现机制,它在 Android Framework 层扮演服务注册中心的角色。它允许进程通过它注册、查询和使用系统服务,实现进程间通信 (IPC) 的基础架构。 ServiceManager 的作用 服务注册:应用程…

DMA理论篇

DMA理论篇 简介 传统的数据传输都是需要CPU来实现,从一个地方拷贝到另一个地方;而DMA(Direct Memory Access)则不完全依赖CPU,DMA更新芯片SOC的一个控制器,他可以控制数据从内存中传输到另一个地方(外设、soc其它模块)&#xff…

SpringBoot 集成 html2Pdf

一、概述&#xff1a; 1. springboot如何生成pdf&#xff0c;接口可以预览可以下载 2. vue下载通过bold如何下载 3. 一些细节&#xff1a;页脚、页眉、水印、每一页得样式添加 二、直接上代码【主要是一个记录下次开发更快】 模板位置 1. 导入pom包 <dependency><g…

IDEA怎么定位java类所用maven依赖版本及引用位置

在实际开发中&#xff0c;我们可能会遇到需要搞清楚代码所用依赖版本号及引用位置的场景&#xff0c;便于排查问题&#xff0c;怎么通过IDEA实现呢&#xff1f; 可以在IDEA中打开项目&#xff0c;右键点击maven的pom.xml文件&#xff0c;或者在maven窗口下选中项目&#xff0c;…

webStorm安装

一、webStorm安装 简介 Webstorm是一款非常受欢迎的优秀开发工具&#xff0c;跟vscode同誉为卧龙凤雏编辑器&#xff0c;是97%开发人员的理想编辑器&#xff0c; 尤其是webstorm&#xff0c;焕然一新的外观&#xff0c;新的导航功能&#xff0c;githob拉取等&#xff0c;更是备…

案例研究|阿特斯的JumpServer分布式部署和多组织管理实践

苏州阿特斯阳光电力科技有限公司&#xff08;以下简称为阿特斯&#xff09;是一家集太阳能光伏组件制造和为全球客户提供太阳能应用产品研发、设计、制造、销售的专业公司。 阿特斯集团总部位于加拿大&#xff0c;中国区总部位于江苏省苏州市。通过全球战略和多元化的市场布局…

数字信号处理(Digital Signal Procession)总结

0、导入库 import numpy as np import matplotlib.pyplot as plt import numpy as np from matplotlib import pyplot as plt from scipy.signal import find_peaks1、创建时域信号 创建时间序列 T 0.01 # 采样间隔 fs 100 # 采样频率 L 1000 # 采样点数 tl 0 # 起始时间…

医院信息化与智能化系统(22)

医院信息化与智能化系统(22) 这里只描述对应过程&#xff0c;和可能遇到的问题及解决办法以及对应的参考链接&#xff0c;并不会直接每一步详细配置 如果你想通过文字描述或代码画流程图&#xff0c;可以试试PlantUML&#xff0c;告诉GPT你的文件结构&#xff0c;让他给你对应…

01Web3.0行业

目录 一、什么是Web 3.0? 二、Web 1.0 vs Web 2.0 vs Web 3.0 三、为什么选择Web 3.0 四、从法律角度观察Web 3.0 1. Web 3.0前时代的数字身份 问题1&#xff1a;个人信息的过度收集 问题2&#xff1a;个人信息的泄露和滥用 2. Web 3.0的解决方案及其法律问题 问题一&…

width设置100vh但出现横向滚动条的问题

在去做flex左右固定,中间自适应宽度的布局时, 发现这样一个问题: 就是我明明是宽度占据整个视口, 但是却多出了横向的滚动条 效果是这样的 把width改成100%,就没有滚动条了 原因: body是有默认样式的, 会有一定的默认边距, 把默认边距清除就是正常的了 同时, 如果把高度设…

opencv undefined reference to `cv::noarray()‘ 。window系统配置opencv,找到opencv库,但连接不了

之前都是在ubuntu里用opencv&#xff0c;今天为了方便在平时用Window10系统也用下c版的cv&#xff0c;就想配置一下vscode的cv环境&#xff0c;直接下载了一个编译好的opencv库&#xff08;带build文件夹的&#xff09;&#xff0c;刚开始用的是visual studio的编译器&#xff…

php常用伪协议整理

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文整理php常见的伪协议 php伪协议介绍 直观点&#xff0c;就是php可以识别的协议。 类似于我们访问网站的http协议&#xff0c;我们用浏览器访问我们自己本地文件的file协议等。 php可以识别这些协议&#xf…

神经网络(系统性学习二):单层神经网络(感知机)

此前篇章&#xff1a; 神经网络中常用的激活函数 神经网络&#xff08;系统性学习一&#xff09;&#xff1a;入门篇 单层神经网络&#xff08;又叫感知机&#xff09; 单层网络是最简单的全连接神经网络&#xff0c;它仅有输入层和输出层&#xff0c;没有隐藏层。即&#x…

后端:事务

文章目录 1. 事务2. Spring 单独配置DataSource3. 利用JdbcTemplate操作数据库4. 利用JdbcTemplate查询数据5. Spring 声明式事务6. 事务的隔离级别6.1 脏读6.2 不可重复读6.3 幻读6.4 不可重复读和幻读的区别6.5 三种方案的比较 7. 事务的传播特性8. 设置事务 只读(readOnly)9…

Fakelocation Server服务器/专业版 Windows11

前言:需要Windows11系统 Fakelocation开源文件系统需求 Windows11 | Fakelocation | 任务一 打开 PowerShell&#xff08;以管理员身份&#xff09;命令安装 Chocolatey Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProto…

MySQL系列之身份鉴别(安全)

导览 前言Q&#xff1a;如何保障MySQL数据库身份鉴别的有效性一、有效性检查1. 用户唯一2. 启用密码验证3. 是否存在空口令用户4. 是否启用口令复杂度校验5. 是否设置口令的有效期6. 是否限制登录失败尝试次数7. 是否设置&#xff08;超过尝试次数&#xff09;锁定的最小时长8.…