【LLM训练系列02】如何找到一个大模型Lora的target_modules

方法1:观察attention中的线性层

import numpy as np
import pandas as pd
from peft import PeftModel
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel, BitsAndBytesConfig
from typing import List
from tqdm.auto import tqdm
from sentence_transformers import SentenceTransformer
import os
os.environ['CUDA_VISIBLE_DEVICES']='1,2'
os.environ["TOKENIZERS_PARALLELISM"] = "false"model_path ="/home/jovyan/codes/llms/Qwen2.5-14B-Instruct"
base_model = AutoModel.from_pretrained(model_path, device_map='cuda:0',trust_remote_code=True)

打印attention模型层的名字

for name, module in base_model.named_modules():if 'attn' in name or 'attention' in name:  # Common attention module namesprint(name)for sub_name, sub_module in module.named_modules():  # Check sub-modules within attentionprint(f"  - {sub_name}")

方法2:通过bitsandbytes量化查找线性层

import bitsandbytes as bnb
def find_all_linear_names(model):lora_module_names = set()for name, module in model.named_modules():if isinstance(module, bnb.nn.Linear4bit):names = name.split(".")# model-specificlora_module_names.add(names[0] if len(names) == 1 else names[-1])if "lm_head" in lora_module_names:  # needed for 16-bitlora_module_names.remove("lm_head")return list(lora_module_names)

加载模型

bnb_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.bfloat16)
base_model = AutoModel.from_pretrained(model_path,quantization_config=bnb_config,device_map="auto")

查找Lora的目标层

find_all_linear_names(base_model)


还有个函数,一样的原理

def find_target_modules(model):# Initialize a Set to Store Unique Layersunique_layers = set()# Iterate Over All Named Modules in the Modelfor name, module in model.named_modules():# Check if the Module Type Contains 'Linear4bit'if "Linear4bit" in str(type(module)):# Extract the Type of the Layerlayer_type = name.split('.')[-1]# Add the Layer Type to the Set of Unique Layersunique_layers.add(layer_type)# Return the Set of Unique Layers Converted to a Listreturn list(unique_layers)find_target_modules(base_model)

方法3:通过分析开源框架的源码swift

代码地址

from collections import OrderedDict
from dataclasses import dataclass, field
from typing import List, Union@dataclass
class ModelKeys:model_type: str = Nonemodule_list: str = Noneembedding: str = Nonemlp: str = Nonedown_proj: str = Noneattention: str = Noneo_proj: str = Noneq_proj: str = Nonek_proj: str = Nonev_proj: str = Noneqkv_proj: str = Noneqk_proj: str = Noneqa_proj: str = Noneqb_proj: str = Nonekva_proj: str = Nonekvb_proj: str = Noneoutput: str = None@dataclass
class MultiModelKeys(ModelKeys):language_model: Union[List[str], str] = field(default_factory=list)connector: Union[List[str], str] = field(default_factory=list)vision_tower: Union[List[str], str] = field(default_factory=list)generator: Union[List[str], str] = field(default_factory=list)def __post_init__(self):# compatfor key in ['language_model', 'connector', 'vision_tower', 'generator']:v = getattr(self, key)if isinstance(v, str):setattr(self, key, [v])if v is None:setattr(self, key, [])LLAMA_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',o_proj='model.layers.{}.self_attn.o_proj',q_proj='model.layers.{}.self_attn.q_proj',k_proj='model.layers.{}.self_attn.k_proj',v_proj='model.layers.{}.self_attn.v_proj',embedding='model.embed_tokens',output='lm_head',
)INTERNLM2_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.feed_forward',down_proj='model.layers.{}.feed_forward.w2',attention='model.layers.{}.attention',o_proj='model.layers.{}.attention.wo',qkv_proj='model.layers.{}.attention.wqkv',embedding='model.tok_embeddings',output='output',
)CHATGLM_KEYS = ModelKeys(module_list='transformer.encoder.layers',mlp='transformer.encoder.layers.{}.mlp',down_proj='transformer.encoder.layers.{}.mlp.dense_4h_to_h',attention='transformer.encoder.layers.{}.self_attention',o_proj='transformer.encoder.layers.{}.self_attention.dense',qkv_proj='transformer.encoder.layers.{}.self_attention.query_key_value',embedding='transformer.embedding',output='transformer.output_layer',
)BAICHUAN_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',qkv_proj='model.layers.{}.self_attn.W_pack',embedding='model.embed_tokens',output='lm_head',
)YUAN_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',qk_proj='model.layers.{}.self_attn.qk_proj',o_proj='model.layers.{}.self_attn.o_proj',q_proj='model.layers.{}.self_attn.q_proj',k_proj='model.layers.{}.self_attn.k_proj',v_proj='model.layers.{}.self_attn.v_proj',embedding='model.embed_tokens',output='lm_head',
)CODEFUSE_KEYS = ModelKeys(module_list='gpt_neox.layers',mlp='gpt_neox.layers.{}.mlp',down_proj='gpt_neox.layers.{}.mlp.dense_4h_to_h',attention='gpt_neox.layers.{}.attention',o_proj='gpt_neox.layers.{}.attention.dense',qkv_proj='gpt_neox.layers.{}.attention.query_key_value',embedding='gpt_neox.embed_in',output='gpt_neox.embed_out',
)PHI2_KEYS = ModelKeys(module_list='transformer.h',mlp='transformer.h.{}.mlp',down_proj='transformer.h.{}.mlp.c_proj',attention='transformer.h.{}.mixer',o_proj='transformer.h.{}.mixer.out_proj',qkv_proj='transformer.h.{}.mixer.Wqkv',embedding='transformer.embd',output='lm_head',
)QWEN_KEYS = ModelKeys(module_list='transformer.h',mlp='transformer.h.{}.mlp',down_proj='transformer.h.{}.mlp.c_proj',attention='transformer.h.{}.attn',o_proj='transformer.h.{}.attn.c_proj',qkv_proj='transformer.h.{}.attn.c_attn',embedding='transformer.wte',output='lm_head',
)PHI3_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',o_proj='model.layers.{}.self_attn.o_proj',qkv_proj='model.layers.{}.self_attn.qkv_proj',embedding='model.embed_tokens',output='lm_head',
)PHI3_SMALL_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',o_proj='model.layers.{}.self_attn.dense',qkv_proj='model.layers.{}.self_attn.query_key_value',embedding='model.embed_tokens',output='lm_head',
)DEEPSEEK_V2_KEYS = ModelKeys(module_list='model.layers',mlp='model.layers.{}.mlp',down_proj='model.layers.{}.mlp.down_proj',attention='model.layers.{}.self_attn',o_proj='model.layers.{}.self_attn.o_proj',qa_proj='model.layers.{}.self_attn.q_a_proj',qb_proj='model.layers.{}.self_attn.q_b_proj',kva_proj='model.layers.{}.self_attn.kv_a_proj_with_mqa',kvb_proj='model.layers.{}.self_attn.kv_b_proj',embedding='model.embed_tokens',output='lm_head',
)

我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=3hiaca88ulogc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/478120.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解!决!vscode!Path Intellisense 失效!不起作用问题!!

第一步:找到path Intellisense插件 点击设置 第二步:打开settings.json文件: 第三步:配置settings.json文件内容: "path-intellisense.mappings": {"": "${workspaceRoot}/src",&qu…

力扣 LeetCode 110. 平衡二叉树(Day8:二叉树)

解题思路: 等于 -1 时,直接 return -1 class Solution {public boolean isBalanced(TreeNode root) {return getHeight(root) ! -1;}public int getHeight(TreeNode root) {if (root null) return 0;int leftDepth getHeight(root.left);if (leftDep…

ros2学习日记_241124_ros相关链接

前言 提醒: 文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。 其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展…

【TEST】Apache JMeter + Influxdb + Grafana

介绍 使用Jmeter发起测试,测试结果存入Influxdb,Grafana展示你的测试结果。 环境 windows 10docker desktopJDK17 安装 Apache JMeter 访问官网(Apache JMeter - Apache JMeter™)下载JMeter(目前最新版本5.6.3&a…

【隐私计算大模型】联邦深度学习之拆分学习Split learning原理及安全风险、应对措施以及在大模型联合训练中的应用案例

Tips:在两方场景下,设计的安全算法,如果存在信息不对等性,那么信息获得更多的一方可以有概率对另一方实施安全性攻击。 1. 拆分学习原理 本文介绍了一种适用于隐私计算场景的深度学习实现方案——拆分学习,又称分割…

汽车HiL测试:利用TS-GNSS模拟器掌握硬件性能的仿真艺术

一、汽车HiL测试的概念 硬件在环(Hardware-in-the-Loop,简称HiL)仿真测试,是模型基于设计(Model-Based Design,简称MBD)验证流程中的一个关键环节。该步骤至关重要,因为它整合了实际…

Vue——响应式数据,v-on,v-bind,v-if,v-for(内含项目实战)

目录 响应式数据 ref reactive 事件绑定指令 v-on v-on 鼠标监听事件 v-on 键盘监听事件 v-on 简写形式 属性动态化指令 v-bind iuput标签动态属性绑定 img标签动态属性绑定 b标签动态属性绑定 v-bind 简写形式 条件渲染指令 v-if 遍历指令 v-for 遍历对象的值 遍历…

Redis 常用数据类型插入性能对比:循环插入 vs. 批量插入

Redis 是一款高性能的键值数据库,其支持多种数据类型(String、Hash、List、Set、ZSet、Geo)。在开发中,经常会遇到需要插入大量数据的场景。如果逐条插入,性能会显得较低,而采用 Pipeline 批量插入 能大幅提…

开源动态表单form-create-designer 扩展个性化配置的最佳实践教程

在开源低代码表单设计器 form-create-designer 的右侧配置面板里,field 映射规则为开发者提供了强大的工具去自定义和增强组件及表单配置的显示方式。通过这些规则,你可以简单而高效地调整配置项的展示,提升用户体验。 源码地址: Github | G…

Java语言编程,通过阿里云mongo数据库监控实现数据库的连接池优化

一、背景 线上程序连接mongos超时,mongo监控显示连接数已使用100%。 java程序报错信息: org.mongodb.driver.connection: Closed connection [connectionId{localValue:1480}] to 192.168.10.16:3717 because there was a socket exception raised by…

深入浅出分布式缓存:原理与应用

文章目录 概述缓存分片算法1. Hash算法2. 一致性Hash算法3. 应用场景Redis集群方案1. Redis 集群方案原理2. Redis 集群方案的优势3. Java 代码示例:Redis 集群数据定位Redis 集群中的节点通信机制:Gossip 协议Redis 集群的节点通信:Gossip 协议Redis 集群的节点通信流程Red…

Loom篇之java虚拟线程那些事儿

我们在之前的文章中提到了java推出纤程的背景和原因。在近三十年来,Java 开发人员一直依赖线程作为并发服务器应用程序的构建块。每个方法中的每个语句都在线程内执行,并且由于 Java 是多线程的,因此多个执行线程会同时发生。线程是 Java 的并…

自然语言处理: RAG优化之Embedding模型选型重要依据:mteb/leaderboard榜

本人项目地址大全:Victor94-king/NLP__ManVictor: CSDN of ManVictor git地址:https://github.com/opendatalab/MinerU 写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!! 写在前面: 笔者更新不易,希望走过路…

如何选择服务器

如何选择服务器 选择服务器时应考虑以下几个关键因素: 性能需求。根据网站的预期流量和负载情况,选择合适的处理器、内存和存储容量。考虑网站是否需要处理大量动态内容或高分辨率媒体文件。 可扩展性。选择一个可以轻松扩展的服务器架构,以便…

Spring 框架七大模块(Java EE 学习笔记03)

​ ​核心容器模块(Core Container) 核心容器模块在Spring的功能体系中起着支撑性作用,是其他模块的基石。核心容器层主要由Beans模块、Core模块、Contex模块和SpEL模块组成。 (1)Beans模块。它提供了BeanFactory类&…

2025-2026财年美国CISA国际战略规划(下)

文章目录 前言四、加强综合网络防御(一)与合作伙伴共同实施网络防御,降低集体风险推动措施有效性衡量 (二)大规模推动标准和安全,以提高网络安全推动措施有效性衡量 (三)提高主要合作…

【大数据技术与开发实训】携程景点在线评论分析

景点在线评论分析 题目要求实验目标技术实现数据采集获取所有相关景点页面的 URL获取所有相关景点对应的 poiId 及其他有用信息通过 poiId 获取所有景点的全部评论数据采集结果 数据预处理景点信息的数据预处理查看数据基本信息缺失值处理 用户评论的数据处理缺失值处理分词、去…

《第十部分》1.STM32之通信接口《精讲》之IIC通信---介绍

经过近一周的USART学习,我深刻体会到通信对单片机的重要性。它就像人类的手脚和大脑,只有掌握了通信技术,单片机才能与外界交互,展现出丰富多彩的功能,变得更加强大和实用。 单片机最基础的“语言”是二进制。可惜&am…

ES 基本使用与二次封装

概述 基本了解 Elasticsearch 是一个开源的分布式搜索和分析引擎,基于 Apache Lucene 构建。它提供了对海量数据的快速全文搜索、结构化搜索和分析功能,是目前流行的大数据处理工具之一。主要特点即高效搜索、分布式存储、拓展性强 核心功能 全文搜索:…

单片机_简单AI模型训练与部署__从0到0.9

IDE: CLion MCU: STM32F407VET6 一、导向 以求知为导向,从问题到寻求问题解决的方法,以兴趣驱动学习。 虽从0,但不到1,剩下的那一小步将由你迈出。本篇主要目的是体验完整的一次简单AI模型部署流程&#x…