Java基础-Java多线程机制

(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹)

目录

一、引言

二、多线程的基本概念

1. 线程与进程

2. 多线程与并发

3. 多线程的优势

三、Java多线程的实现方式

1. 继承Thread类

2. 实现Runnable接口

3. 实现Callable接口与Future

四、线程的生命周期

线程状态转换示例

五、同步与互斥

1. 同步的必要性

2. Java中的同步机制

synchronized关键字

Lock接口

volatile关键字

3. 同步的代价

六、线程间通信的深入探索

1. 等待/通知机制

2. Java并发包中的线程间通信

3. 其他并发工具


一、引言

在Java编程中,多线程机制是并发编程的核心部分,它允许程序同时执行多个任务,从而显著提高程序的执行效率和响应速度。多线程不仅在现代应用程序中广泛应用,如服务器后端处理、图形用户界面(GUI)响应、实时数据处理等场景,也是深入理解Java并发包(java.util.concurrent)和其他高级并发工具的基础。本文将从多线程的基本概念、实现方式、生命周期、同步与互斥、线程间通信、线程池等多个方面,对Java多线程机制进行深度解析,并通过代码示例进行具体说明。

二、多线程的基本概念

1. 线程与进程

  • 进程(Process):是系统进行资源分配和调度的基本单位,拥有独立的内存空间和系统资源。每个进程都包含至少一个线程,即主线程。
  • 线程(Thread):是进程中的一个执行实体,也是CPU调度和分派的基本单位。线程共享所属进程的内存空间和系统资源,但每个线程都有独立的执行栈和程序计数器。

2. 多线程与并发

  • 多线程:指在一个程序中同时执行多个线程,每个线程都有自己的执行路径和生命周期。
  • 并发:指在同一时间段内,多个任务交替执行,虽然每个时刻只有一个任务在CPU上执行,但由于CPU切换线程的速度非常快,用户感觉上多个任务在同时执行。

3. 多线程的优势

  • 提高系统响应性能:将耗时的操作放在后台线程中处理,保持主线程的流畅和响应。
  • 提高计算机资源利用率:利用多核处理器的优势,并行执行多个任务。
  • 实现异步编程:主线程可以在等待后台线程完成任务的同时,继续执行其他任务。

三、Java多线程的实现方式

1. 继承Thread类

通过继承java.lang.Thread类并重写其run方法来实现多线程。这种方式简单直接,但存在Java单继承的限制。

public class MyThread extends Thread {  @Override  public void run() {  System.out.println(Thread.currentThread().getName() + " is running.");  // 执行具体任务  }  public static void main(String[] args) {  MyThread t1 = new MyThread();  MyThread t2 = new MyThread();  t1.start(); // 启动线程  t2.start(); // 启动线程  }  
}

2. 实现Runnable接口

通过实现java.lang.Runnable接口的run方法来创建线程。这种方式更为灵活,因为一个类可以实现多个接口,同时也可以通过Thread类的构造器将Runnable实例传递给线程。

public class MyRunnable implements Runnable {  @Override  public void run() {  System.out.println(Thread.currentThread().getName() + " is running.");  // 执行具体任务  }  public static void main(String[] args) {  Thread t1 = new Thread(new MyRunnable());  Thread t2 = new Thread(new MyRunnable());  t1.start();  t2.start();  }  
}

3. 实现Callable接口与Future

Callable接口类似于Runnable,但它可以返回一个结果,并且可以抛出异常。Callable通常与Future一起使用,Future用于表示异步计算的结果。

import java.util.concurrent.*;  public class MyCallable implements Callable<Integer> {  @Override  public Integer call() throws Exception {  // 模拟耗时操作  Thread.sleep(1000);  return 123;  }  public static void main(String[] args) throws ExecutionException, InterruptedException {  ExecutorService executor = Executors.newFixedThreadPool(2);  Future<Integer> future = executor.submit(new MyCallable());  System.out.println("Waiting for result...");  Integer result = future.get(); // 阻塞等待结果  System.out.println("Result: " + result);  executor.shutdown();  }  
}

四、线程的生命周期

线程的生命周期包括新建状态、就绪状态、运行状态、阻塞状态和死亡状态。

  • 新建状态:线程被创建但尚未启动。
  • 就绪状态:线程已准备好执行,但尚未获得CPU时间片。
  • 运行状态:线程获得CPU时间片,正在执行。
  • 阻塞状态:线程由于某种原因(如等待IO操作完成、等待锁资源等)暂停执行。
  • 死亡状态:线程执行完毕或被强制终止,不再执行任何操作。

线程状态转换示例

线程的状态转换是线程执行过程中的自然流程。以下是一个简化的示例,用于说明线程状态之间的转换:

public class ThreadLifecycleExample {  static class MyThread extends Thread {  @Override  public void run() {  System.out.println(Thread.currentThread().getName() + " is in RUNNABLE state.");  synchronized (this) {  try {  wait(); // 进入WAITING状态  } catch (InterruptedException e) {  Thread.currentThread().interrupt(); // 恢复中断状态  }  }  System.out.println(Thread.currentThread().getName() + " resumes and terminates.");  }  }  public static void main(String[] args) throws InterruptedException {  MyThread t = new MyThread();  t.start(); // t进入RUNNABLE状态  // 假设主线程执行了一些操作后,决定唤醒t  Thread.sleep(1000); // 模拟耗时操作  synchronized (t) {  t.notify(); // 唤醒t,使其从WAITING状态进入RUNNABLE状态  }  // t最终会执行完毕,进入TERMINATED状态  }  
}  // 注意:上述代码中的wait()和notify()调用必须放在同步块中,否则将抛出IllegalMonitorStateException。  
// 此外,由于wait()会释放锁,而notify()不会立即让线程进入RUNNABLE状态(需要CPU调度),  
// 因此实际输出可能因线程调度和JVM实现而有所不同。

 在实际应用中,线程的状态转换远比上述示例复杂,特别是在多线程并发环境下,线程的调度和执行顺序往往难以预测。

五、同步与互斥

1. 同步的必要性

在多线程环境下,多个线程可能会同时访问共享资源(如内存中的变量、文件等),这可能导致数据不一致、脏读、脏写等问题。为了确保数据的一致性和完整性,需要对访问共享资源的操作进行同步控制。

2. Java中的同步机制

Java提供了多种同步机制,包括synchronized关键字、Lock接口及其实现(如ReentrantLock)、volatile关键字等。

synchronized关键字

  • 同步方法:在方法声明中加上synchronized关键字,该方法在同一时刻只能被一个线程执行。
  • 同步代码块:使用synchronized(Object lock) { ... }语法,对特定代码块进行同步,其中lock是锁对象。
public class Counter {  private int count = 0;  // 同步方法  public synchronized void increment() {  count++;  }  // 同步代码块  public void incrementWithBlock(Object lock) {  synchronized (lock) {  count++;  }  }  
}

Lock接口

Lock接口提供了比synchronized关键字更灵活的锁定机制,它允许显式地获取和释放锁,以及尝试非阻塞地获取锁。

import java.util.concurrent.locks.Lock;  
import java.util.concurrent.locks.ReentrantLock;  public class CounterWithLock {  private int count = 0;  private final Lock lock = new ReentrantLock();  public void increment() {  lock.lock(); // 显式获取锁  try {  count++;  } finally {  lock.unlock(); // 显式释放锁  }  }  
}

volatile关键字

volatile关键字用于确保变量的可见性,即当一个线程修改了被volatile修饰的变量的值时,这个新值对其他线程是立即可见的。但volatile不能保证原子性,也不具备互斥性。

public class VolatileExample {  private volatile boolean flag = false;  public void setFlag(boolean flag) {  this.flag = flag;  }  public boolean getFlag() {  return flag;  }  
}

3. 同步的代价

同步虽然能够解决多线程并发带来的问题,但它也引入了额外的开销,如线程等待锁的时间、上下文切换的成本等。因此,在设计多线程程序时,应合理使用同步机制,避免过度同步导致的性能问题。

六、线程间通信的深入探索

在Java中,线程间通信主要依赖于共享内存和相应的同步机制。通过共享内存,线程可以访问和修改同一份数据,而同步机制则确保了在多线程环境下对这些数据的访问是安全且有序的。

1. 等待/通知机制

Java中的wait()notify()/notifyAll()方法是实现线程间通信的经典方式。这些方法是Object类的一部分,因此任何对象都可以作为锁来使用这些机制。

  • wait():使当前线程等待,直到另一个线程调用此对象的notify()方法或notifyAll()方法。调用wait()方法时,当前线程必须持有该对象的锁。调用后,当前线程会释放锁并进入等待状态,直到被唤醒。
  • notify():唤醒在此对象监视器上等待的单个线程。如果所有线程都在此对象上等待,则会选择唤醒其中一个线程。选择是任意性的。
  • notifyAll():唤醒在此对象监视器上等待的所有线程。

使用wait()notify()/notifyAll()时,必须注意以下几点:

  • 必须在同步方法或同步代码块中调用这些方法,因为它们依赖于对象锁。
  • 调用wait()的线程会释放锁,并在等待期间无法继续执行。
  • 调用notify()notifyAll()的线程不会立即释放锁,直到它退出同步方法或同步代码块。
  • wait()notify()notifyAll()在调用时必须处理InterruptedException异常。

2. Java并发包中的线程间通信

除了wait()notify()/notifyAll()方法外,Java并发包(java.util.concurrent)还提供了更高级的线程间通信机制,如BlockingQueueCountDownLatchCyclicBarrierSemaphore等。

  • BlockingQueue:支持两个附加操作的队列。这两个附加操作是:在元素从队列中取出时等待队列变为非空,以及在元素添加到队列中时等待队列中有可用空间。BlockingQueue接口是Java并发包中用于生产者-消费者问题的一种重要工具,它提供了一系列线程安全的队列操作。

BlockingQueue的实现包括ArrayBlockingQueueLinkedBlockingQueuePriorityBlockingQueue等。这些实现各有特点,比如ArrayBlockingQueue是一个由数组支持的有界阻塞队列,LinkedBlockingQueue是一个由链表结构组成的有界(但默认大小为Integer.MAX_VALUE)或无界阻塞队列,而PriorityBlockingQueue则是一个支持优先级排序的无界阻塞队列。

3. 其他并发工具

  • CountDownLatch:一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。
  • CyclicBarrier:一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点(common barrier point)。在涉及固定大小的线程组时,这些线程必须互相等待,直到所有线程都到达该屏障点,然后从屏障点继续执行。
  • Semaphore:一个计数信号量。从概念上讲,信号量维护了一个许可集。如有必要,在许可可用前会阻塞每一个acquire(),然后再获取该许可。每个release()添加一个许可,从而可能释放一个正在acquire()中阻塞的线程。

这些工具各有用途,在解决复杂的并发问题时非常有用。例如,CountDownLatch可以用于等待一组任务的完成,CyclicBarrier可以用于让一组线程在某个点互相等待然后共同继续执行,而Semaphore则可以用于控制对共享资源的访问。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/478171.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode面试150】——202快乐数

博客昵称&#xff1a;沈小农学编程 作者简介&#xff1a;一名在读硕士&#xff0c;定期更新相关算法面试题&#xff0c;欢迎关注小弟&#xff01; PS&#xff1a;哈喽&#xff01;各位CSDN的uu们&#xff0c;我是你的小弟沈小农&#xff0c;希望我的文章能帮助到你。欢迎大家在…

详细教程-Linux上安装单机版的Hadoop

1、上传Hadoop安装包至linux并解压 tar -zxvf hadoop-2.6.0-cdh5.15.2.tar.gz 安装包&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1u59OLTJctKmm9YVWr_F-Cg 提取码&#xff1a;0pfj 2、配置免密码登录 生成秘钥&#xff1a; ssh-keygen -t rsa -P 将秘钥写入认…

Python 获取微博用户信息及作品(完整版)

在当今的社交媒体时代&#xff0c;微博作为一个热门的社交平台&#xff0c;蕴含着海量的用户信息和丰富多样的内容。今天&#xff0c;我将带大家深入了解一段 Python 代码&#xff0c;它能够帮助我们获取微博用户的基本信息以及下载其微博中的相关素材&#xff0c;比如图片等。…

07-SpringCloud-Gateway新一代网关

一、概述 1、Gateway介绍 官网&#xff1a;https://spring.io/projects/spring-cloud-gateway Spring Cloud Gateway组件的核心是一系列的过滤器&#xff0c;通过这些过滤器可以将客户端发送的请求转发(路由)到对应的微服务。 Spring Cloud Gateway是加在整个微服务最前沿的防…

MyBatis基本使用

一、向SQL语句传参: 1.MyBatis日志输出配置: mybatis配置文件设计标签和顶层结构如下: 可以在mybatis的配置文件使用settings标签设置&#xff0c;输出运过程SQL日志,通过查看日志&#xff0c;可以判定#{}和${}的输出效果 settings设置项: logImpl指定 MyBatis 所用日志的具…

实验二 系统响应及系统稳定性

实验目的 &#xff08;1&#xff09;学会运用Matlab 求解离散时间系统的零状态响应&#xff1b; &#xff08;2&#xff09;学会运用Matlab 求解离散时间系统的单位取样响应&#xff1b; &#xff08;3&#xff09;学会运用Matlab 求解离散时间系统的卷积和。 实验原理及实…

秋招面试基础总结,Java八股文基础(串联知识),四万字大全

目录 值传递和引用传递 静态变量和静态代码块的执行顺序 Java​​​​​​​集合的框架&#xff0c;Set,HashSet,LinkedHashSet这三个底层是什么 多线程篇 Java实现多线程的方式 假设一个线程池&#xff0c;核心线程数是2&#xff0c;最大线程数是3&#xff0c;阻塞队列是4…

C# 数据结构之【图】C#图

1. 图的概念 图是一种重要的数据结构&#xff0c;用于表示节点&#xff08;顶点&#xff09;之间的关系。图由一组顶点和连接这些顶点的边组成。图可以是有向的&#xff08;边有方向&#xff09;或无向的&#xff08;边没有方向&#xff09;&#xff0c;可以是加权的&#xff…

如何在WPF中嵌入其它程序

在WPF中嵌入其它程序&#xff0c;这里提供两种方案 一、使用WindowsFormHost 使用步骤如下 1、添加WindowsFormsIntegration和System.Windows.Forms引用 2、在界面上放置WindowsFormHost和System.Windows.Forms.Panel 1 <Grid> 2 <WindowsFormsHost> 3…

丹摩|丹摩智算平台深度评测

1. 丹摩智算平台介绍 随着人工智能和大数据技术的快速发展&#xff0c;越来越多的智能计算平台涌现&#xff0c;为科研工作者和开发者提供高性能计算资源。丹摩智算平台作为其中的一员&#xff0c;定位于智能计算服务的提供者&#xff0c;支持从数据处理到模型训练的全流程操作…

[pdf,epub]162页《分析模式》漫谈合集01-35提供下载

《分析模式》漫谈合集01-35的pdf、epub文件&#xff0c;已上传至本号的CSDN资源。 如果CSDN资源下载有问题&#xff0c;可到umlchina.com/url/ap.html。 已排版成适合手机阅读&#xff0c;pdf的排版更好一些。 ★UMLChina为什么叒要翻译《分析模式》&#xff1f; ★[缝合故事…

Charles抓包工具-笔记

摘要 概念&#xff1a; Charles是一款基于 HTTP 协议的代理服务器&#xff0c;通过成为电脑或者浏览器的代理&#xff0c;然后截取请求和请求结果来达到分析抓包的目的。 功能&#xff1a; Charles 是一个功能全面的抓包工具&#xff0c;适用于各种网络调试和优化场景。 它…

C语言练习.if.else语句.strstr

今天在做题之前&#xff0c;先介绍一下&#xff0c;新学到的库函数strstr 想要使用它&#xff0c;要先给它一个头文件<string.h> char *strstr(const char*str1,const char*str2); 首先&#xff1a;1.strstr的返回值是char&#xff0c;字符类型的。 2.两个实参&#xff…

WebRTC音视频同步原理与实现详解(上)

第一章、RTP时间戳与NTP时间戳 1.1 RTP时间戳 时间戳&#xff0c;用来定义媒体负载数据的采样时刻&#xff0c;从单调线性递增的时钟中获取&#xff0c;时钟的精度由 RTP 负载数据的采样频率决定。 音频和视频的采样频率是不一样的&#xff0c;一般音频的采样频率有 8KHz、…

uni-app 发布媒介功能(自由选择媒介类型的内容) 设计

1.首先明确需求 我想做一个可以选择媒介的内容&#xff0c;来进行发布媒介的功能 &#xff08;媒介包含&#xff1a;图片、文本、视频&#xff09; 2.原型设计 发布-编辑界面 通过点击下方的加号&#xff0c;可以自由选择添加的媒介类型 但是因为预览中无法看到视频的效果&…

详细探索xinput1_3.dll:功能、问题与xinput1_3.dll丢失的解决方案

本文旨在深入探讨xinput1_3.dll这一动态链接库文件。首先介绍其在计算机系统中的功能和作用&#xff0c;特别是在游戏和输入设备交互方面的重要性。然后分析在使用过程中可能出现的诸如文件丢失、版本不兼容等问题&#xff0c;并提出相应的解决方案&#xff0c;包括重新安装相关…

Ubuntu,openEuler,MySql安装

文章目录 Ubuntu什么是Ubuntu概述Ubuntu版本简介桌面版服务器版 部署系统新建虚拟机安装系统部署后的设置设置root密码关闭防火墙启用允许root进行ssh安装所需软件制作快照 网络配置Netplan概述配置详解配置文件DHCP静态IP设置 软件安装方法apt安装软件作用常用命令配置apt源 d…

大数据实验4-HBase

一、实验目的 阐述HBase在Hadoop体系结构中的角色&#xff1b;能够掌握HBase的安装和配置方法熟练使用HBase操作常用的Shell命令&#xff1b; 二、实验要求 学习HBase的安装步骤&#xff0c;并掌握HBase的基本操作命令的使用&#xff1b; 三、实验平台 操作系统&#xff1…

docker pull命令拉取镜像失败的解决方案

docker pull命令拉取镜像失败的解决方案 简介&#xff1a; docker pull命令拉取镜像失败的解决方案 docker pull命令拉取镜像失败的解决方案 一、执行docker pull命令&#xff0c;拉取镜像失败 报错信息&#xff1a;error pulling image configuration: Get https://produc…

qt+opengl 三维物体加入摄像机

1 在前几期的文章中&#xff0c;我们已经实现了三维正方体的显示了&#xff0c;那我们来实现让物体的由远及近&#xff0c;和由近及远。这里我们需要了解一个概念摄像机。 1.1 摄像机定义&#xff1a;在世界空间中位置、观察方向、指向右侧向量、指向上方的向量。如下图所示: …