大模型开发中LCEL与LLMChain响应度的对比

管道连接

import timefrom langchain_community.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplatet1 = time.time()
llm = ChatOpenAI(
)resp_prompt_path = 'response_prompt.md'
prompt = PromptTemplate.from_file(resp_prompt_path,encoding='utf-8')
prompt = prompt.partial(query="现在客运量是多少?",result="### rt_schema:['客运量'], rt_result:[888461]",reply_nodata="昨日数据未完成结算, 请12点以后查看。",today="2024-11-27")chain = prompt | llm | StrOutputParser()print(chain.invoke({"query":"现在客运量是多少?","result":"### rt_schema:['客运量'], rt_result:[888461]","today":"2024-11-27"}))print(time.time()-t1)

其中,要求prompt类型为PromptTemplate类型。

LLMChain

import timefrom langchain.chains.llm import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, \SystemMessagePromptTemplate, MessagesPlaceholderresp_prompt_path = 'response_prompt.md'
prompt = PromptTemplate.from_file(resp_prompt_path,encoding='utf-8')
prompt = prompt.partial(query="现在客运量是多少?",result="### rt_schema:['客运量'], rt_result:[888461]",reply_nodata="昨日数据未完成结算, 请12点以后查看。",today="2024-11-27")prompt_ = prompt.format()t2 = time.time()
llm = ChatOpenAI(
)
prompt = ChatPromptTemplate(messages=[SystemMessagePromptTemplate.from_template("You are a nice chatbot having a conversation with a human."),MessagesPlaceholder(variable_name="chat_history"),HumanMessagePromptTemplate.from_template(prompt_)]
)memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation = LLMChain(llm=llm,prompt=prompt,verbose=True,memory=memory
)resp = conversation.invoke({"data":str({"query":"现在客运量是多少?","result":"### rt_schema:['客运量'], rt_result:[888461]","today":"2024-11-27"})})
resp_str = StrOutputParser.parse(self='',text=resp.get('text'))
print(resp_str)print(time.time()-t2)

其中,HumanMessagePromptTemplate.from_template()要求参数是str类型,需要将prompt通过prompt.format()转成str,进入LLMChain后prompt要求是ChatPromptTemplate类型的。另外,该模型只能接收一个参数,如果出现多个参数,需要转换。

目前在大模型开发中,遇到响应度体验的问题,本想通过拆掉pipeline提升速度,但是最终发现效果不明显。就保留langchain的LCEL模式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/479532.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hot100 - 除自身以外数组的乘积

Hot100 - 除自身以外数组的乘积 最佳思路: 此问题的关键在于通过两次遍历,分别计算从左侧和右侧开始的累积乘积,以此避免使用额外的除法操作。 时间复杂度: 该算法的时间复杂度为 O(n),因为我们只需要遍历数组两次。…

一个vue项目如何运行在docker

将 Vue.js 应用程序通过 Docker 发布是一个非常常见的做法,它可以帮助你轻松地部署应用到不同的环境中。下面是一个简单的指南,介绍如何为 Vue.js 项目创建 Dockerfile 并进行构建和运行。 第一步:安装 Docker 确保你的开发机器上已经安装了…

【公益接口】不定时新增接口,仅供学习

文章日期:2024.11.24 使用工具:Python 文章类型:公益接口 文章全程已做去敏处理!!! 【需要做的可联系我】 AES解密处理(直接解密即可)(crypto-js.js 标准算法&#xff…

使用phpStudy小皮面板模拟后端服务器,搭建H5网站运行生产环境

一.下载安装小皮 小皮面板官网下载网址:小皮面板(phpstudy) - 让天下没有难配的服务器环境! 安装说明(特别注意) 1. 安装路径不能包含“中文”或者“空格”,否则会报错(例如错误提示:Cant cha…

DolphinDB 登陆伦敦!携手中英人工智能协会共话 AI 未来

11 月 9 日,DolphinDB 联合中英人工智能协会(CBAIA)在全球人工智能中心、今年三位诺贝尔奖得主的诞生地——伦敦盖茨比计算神经科学中心举办 AI 技术交流会。来自人工智能、量化投资等领域的 150 多位全球专家齐聚一堂,共同探讨人…

爬虫与反爬-Ja3指纹风控(Just a moment...)处理方案及参数说明

概述:本文将针对 Ja3 指纹检测风控进行处理,举例了一个案例并使用两种不同的破解方案进行突破,同时深入了解指纹间不同字符所代表的含义 指纹检测背景: 1、每一个设备、软件都有独属于自己的设备信息、版本号、加密算法、椭圆算…

数据结构——排序算法第二幕(交换排序:冒泡排序、快速排序(三种版本) 归并排序:归并排序(分治))超详细!!!!

文章目录 前言一、交换排序1.1 冒泡排序1.2 快速排序1.2.1 hoare版本 快排1.2.2 挖坑法 快排1.2.3 lomuto前后指针 快排 二、归并排序总结 前言 继上篇学习了排序的前面两个部分:直接插入排序和选择排序 今天我们来学习排序中常用的交换排序以及非常稳定的归并排序 快排可是有多…

华为云云连接+squid进行正向代理上网冲浪

1 概述 ‌Squid‌是一个高性能的代理缓存服务器,主要用于缓冲Internet数据。它支持多种协议,包括FTP、gopher、HTTPS和HTTP。Squid通过一个单独的、非模块化的、I/O驱动的进程来处理所有的客户端请求,这使得它在处理请求时具有较高的效率‌。…

杰发科技AC7803——不同晶振频率时钟的配置

计算公式 PLL_POSDIV [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62] PLL_PREDIV_1 1 2 4 USE_XTAL 24M SYSCLK_FREQ 64M SYSCLK_DIVIDER 1 VCO USE_XTAL*…

攸信技术:运动文化激发企业活力,赋能体育行业新未来

在攸信技术,运动文化如同春日暖阳,温暖着每一位员工的心。这份文化,源自盈趣科技的深厚底蕴,橙色不仅传递着3POS文化中的激情与活力,更成为了攸信人共同的精神标识。公司的每一个角落,都洋溢着对运动的热爱…

【ubuntu24.04】GTX4700 配置安装cuda

筛选显卡驱动显卡驱动 NVIDIA-Linux-x86_64-550.135.run 而后重启:最新的是12.6 用于ubuntu24.04 ,但是我的4700的显卡驱动要求12.4 cuda

LightRAG - 更快更便宜的GraphRAG

检索增强生成(Retrieval-Augmented Generation, RAG)已经成为提升大型语言模型(LLMs)能力的重要方法之一,通过整合外部知识,显著改善了生成内容的质量和相关性。 RAG 的局限性 传统的 RAG 系统虽然表现优…

TCP/IP协议攻击与防范

一、TCP/IP协议攻击介绍 1.1 Internet的结构​ LAN:局域网 WAN:广域网 WLAN:无线局域网 私有IP地址与公有IP地址? 私有地址:A类:10.0.0.0~10.255.255.255 B类:172.16.0.0~172.31.255.255…

机器学习模型——线性回归

文章目录 前言1.基础概念2.代价函数3.单变量线性回归3.1加载数据3.2初始化超参数3.3梯度下降算法3.3.1初次梯度下降3.3.2 多次梯度下降3.3.3结果可视化 前言 随着互联网数据不断累积,硬件不断升级迭代,在这个信息爆炸的时代,机器学习已被应用…

Flink CDC 使用实践以及遇到的问题

背景 最近公司在做一些业务上的架构调整,有一部分是数据从mysql采集到Starrocks,之前的一套方法是走 debezium 到 puslar 到 starrocks,这一套下来比较需要配置很多东西,而且出现问题以后,需要修改很多配置,而且现阶段…

Pgsql:json字段查询与更新

1.查询json字段的值 SELECT attribute_data->>设施类别 mycol, * FROM gis_coord_data WHERE attribute_data->>设施类别阀门井 查询结果如下: 2.更新json字段中的某个属性值 UPDATE gis_coord_data SET attribute_data(attribute_data::jsonb ||{&quo…

DAMODEL丹摩 | 关于我部署与使用FLUX.1+ComfyUI生成了一位三只手的jk美少女这回事

DAMODEL丹摩 | 关于我部署与使用FLUX.1ComfyUI生成了一位三只手的jk美少女这回事 最终效果图FLUX.1简介部署流程1. 创建资源2. 登录实例3. 部署ComfyUI4. 部署FLUX.1 使用流程1. 运行FLUX.1 导入工作流 声明:非广告,为用户使用体验分享 最终效果图 FLUX.…

d3-contour 生成等高线图

D3.js 是一个强大的 JavaScript 库,用于创建动态、交互式数据可视化。d3-contour 是 D3.js 的一个扩展模块,用于生成等高线图(contour plots)。 属性和方法 属性 x: 一个函数,用于从数据点中提取 x 坐标。y: 一个函…

微信小程序 城市点击后跳转 并首页显示被点击城市

在微信小程序中,渲染出城市列表后,如何点击城市,就跳转回到首页,并在首页显示所点击的城市呢? 目录 一、定义点击城市的事件 二、首页的处理 首页:点击成都市会跳转到城市列表 城市列表:点击…

Web 学习笔记 - 网络安全

前言 作为 前端开发者,了解一点 Web 安全方面的基本知识是有很必要的,未必就要深入理解。本文主要介绍常见的网络攻击类型,不作深入探讨。 正文 网络攻击的形式种类繁多,从简单的网站敏感文件扫描、弱口令暴力破解,…