初试无监督学习 - K均值聚类算法

文章目录

  • 1. K均值聚类算法概述
  • 2. k均值聚类算法演示
    • 2.1 准备工作
    • 2.2 生成聚类用的样本数据集
    • 2.3 初始化KMeans模型对象,并指定类别数量
    • 2.4 用样本数据训练模型
    • 2.5 用训练好的模型生成预测结果
    • 2.6 输出预测结果
    • 2.7 可视化预测结果
  • 3. 实战小结

1. K均值聚类算法概述

  • K均值聚类算法是一种迭代的、基于中心的聚类方法,将数据点划分为K个簇。算法通过随机选择初始中心点,然后迭代地分配数据点到最近的簇中心,并更新簇中心为簇内所有点的均值,直到收敛或达到最大迭代次数。它简单、高效,适用于大规模数据集。

2. k均值聚类算法演示

2.1 准备工作

下面的代码导入数据处理和绘图库,设置绘图样式为seaborn-v0_8,格式化NumPy数组输出。

在这里插入图片描述
下面两行代码是Python中使用scikit-learn库进行聚类分析的准备工作:

  1. from sklearn.cluster import KMeans:这行代码从sklearn.cluster模块中导入KMeans类。KMeans是一种常用的聚类算法,用于将数据点分组成K个簇,使得簇内的点尽可能相似,簇间的点尽可能不同。

  2. from sklearn.datasets import make_blobs:这行代码从sklearn.datasets模块中导入make_blobs函数。make_blobs用于生成人造的聚类数据集,这些数据集由若干个“blobs”组成,每个“blob”是一个高密度的数据点集合,它们在特征空间中相对独立,适合用来测试和展示聚类技术的效果。

通常,这两行代码会用在数据分析或机器学习项目的开始阶段,为聚类任务做准备。
在这里插入图片描述

  • 什么是blobs?在机器学习和数据科学领域,“blobs” 这个词通常用来描述一种特定类型的数据集,这种数据集由聚类算法生成,用于测试和展示聚类技术的效果。“Blobs” 数据集包含若干个 “blob”,每个 “blob” 是一个高密度的数据点集合,它们在特征空间中相对独立。

  • 高斯分布:每个 “blob” 通常由高斯(正态)分布生成,这意味着数据点围绕中心点呈钟形分布。

  • 分离性:不同的 “blobs” 之间相对分离,这使得它们容易被聚类算法识别和分开。

  • 维度:“Blobs” 数据集可以是二维的,用于可视化,也可以是更高维度的,用于更复杂的分析。

2.2 生成聚类用的样本数据集

在这里插入图片描述

2.3 初始化KMeans模型对象,并指定类别数量

在这里插入图片描述

2.4 用样本数据训练模型

在这里插入图片描述

2.5 用训练好的模型生成预测结果

在这里插入图片描述

2.6 输出预测结果

在这里插入图片描述

2.7 可视化预测结果

在这里插入图片描述
一旦训练了如 KMeans之类的算法,它就可以预测新样本 ( 之前未见过的样本 ) 所属的类别。假设我们在描述银行潜在债务人和实际债务人的特征数据集上训练这种算法,它可以通过生成两个类别来了解潜在债务人的信誉度,将新的潜在债务人归类为两个类别之一:​“信誉良好”与“信誉不佳”。

3. 实战小结

通过本次实战,我们深入理解并应用了K均值聚类算法,这是一种广泛应用于数据科学领域的无监督学习方法。我们首先导入了必要的库,包括数据处理的NumPy、数据分析的Pandas以及数据可视化的Matplotlib,并设置了绘图样式以提升图表美观度。接着,我们利用make_blobs函数生成了模拟数据,为聚类分析提供了基础数据集。

在初始化KMeans模型时,我们指定了类别数量,这在实际应用中需要根据数据特性和业务需求来确定。通过训练模型并生成预测结果,我们成功地将数据点划分为不同的簇。最后,通过可视化预测结果,我们直观地展示了聚类效果,进一步验证了模型的准确性。

此外,我们还探讨了"blobs"的概念,即由聚类算法生成的高密度数据点集合,它们在特征空间中的相对独立性为聚类算法提供了理想的测试环境。通过本次实战,我们不仅掌握了K均值聚类算法的实现流程,还学会了如何通过数据可视化来评估聚类效果,为解决实际问题打下了坚实基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/480057.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据笔记

第一章、大数据概述 人类的行为及产生的事件的一种记录称之为数据。 1、大数据时代的特征,并结合生活实例谈谈带来的影响。 (一)特征 1、Volume 规模性:数据量大。 2、Velocity高速性:处理速度快。数据的生成和响…

深度学习实战老照片上色

目录 1.研究背景与意义1. 卷积神经网络(CNN)在老照片上色中的应用1.1 卷积层与特征提取1.2 颜色空间转换1.3 损失函数与训练优化 2. 生成对抗网络(GAN)在老照片上色中的应用2.1 生成器与判别器2.2 对抗训练2.3 条件生成对抗网络&a…

C#面向对象,封装、继承、多态、委托与事件实例

一.面向对象封装性编程 创建一个控制台应用程序,要求: 1.定义一个服装类(Cloth),具体要求如下 (1)包含3个字段:服装品牌(mark),服装…

养老院、学校用 安科瑞AAFD-40Z单相电能监测故障电弧探测器

安科瑞戴婷 Acrel-Fanny 安科瑞单相电能监测故障电弧探测器对接入线路中的故障电弧(包括故障并联电弧、故障串联电弧)进行有效的检测,当检测到线路中存在引起火灾的故障电弧时,探测器可以进行现场的声光报警,并将报警…

PAT甲级 1056 Mice and Rice(25)

文章目录 题目题目大意基本思路AC代码总结 题目 原题链接 题目大意 给定参赛的老鼠数量为NP,每NG只老鼠分为一组,组中最胖的老鼠获胜,并进入下一轮,所有在本回合中失败的老鼠排名都相同,获胜的老鼠继续每NG只一组&am…

[SWPUCTF 2021 新生赛]include

参考博客: 文件包含 [SWPUCTF 2021 新生赛]include-CSDN博客 NSSCTF | [SWPUCTF 2021 新生赛]include-CSDN博客 考点:php伪协议和文件包含 PHP伪协议详解-CSDN博客 php://filter php://filter可以获取指定文件源码。当它与包含函数结合时,php://filter流会被当…

spring boot3.3.5 logback-spring.xml 配置

新建 resources/logback-spring.xml 控制台输出颜色有点花 可以自己更改 <?xml version"1.0" encoding"UTF-8"?> <!--关闭文件扫描 scanfalse --> <configuration debug"false" scan"false"><springProperty …

Unity shaderlab 实现LineSDF

实现效果&#xff1a; 实现代码&#xff1a; Shader "Custom/LineSDF" {Properties{}SubShader{Tags { "RenderType""Opaque" }Pass{CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"struct appdata{floa…

PHP 去掉特殊不可见字符 “\u200e“

描述 最近在排查网站业务时&#xff0c;发现有数据匹配失败的情况 肉眼上完全看不出问题所在 当把字符串 【M24308/23-14F‎】复制出来发现 末尾有个不可见的字符 使用删除键或左右移动时才会发现 最后测试通过 var_dump 打印 发现这个"空字符"占了三个长度 &#xf…

Web会话安全测试

Web会话安全测试 - 知乎 1、会话ID不可预测性 【要求】 会话ID必须采用安全随机算法&#xff08;如SecureRandom&#xff09;生成&#xff0c;并且强度不得低于256位&#xff08;32字符&#xff09;&#xff0c;如采用Tomcat原生JSESSIONID【描述】 密码与证书等认证手段&…

springboot336社区物资交易互助平台pf(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 社区物资交易互助平台设计与实现 摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff…

富文本编辑器图片上传并回显

1.概述 在代码业务需求中&#xff0c;我们会经常涉及到文件上传的功能&#xff0c;通常来说&#xff0c;我们存储文件是不能直接存储到数 据库中的&#xff0c;而是以文件路径存储到数据库中&#xff1b;但是存储文件的路径到数据库中又会有一定的问题&#xff0c;就是 浏览…

结构体详解+代码展示

系列文章目录 &#x1f388; &#x1f388; 我的CSDN主页:OTWOL的主页&#xff0c;欢迎&#xff01;&#xff01;&#xff01;&#x1f44b;&#x1f3fc;&#x1f44b;&#x1f3fc; &#x1f389;&#x1f389;我的C语言初阶合集&#xff1a;C语言初阶合集&#xff0c;希望能…

学习ASP.NET Core的身份认证(基于Session的身份认证1)

ASP.NET Core使用Session也可以实现身份认证&#xff0c;关于Session的介绍请见参考文献5。基于Session的身份认证大致原理就是用户验证成功后将用户信息保存到Session中&#xff0c;然后在其它控制器中从Session中获取用户信息&#xff0c;用户退出时清空Session数据。百度基于…

题目 3209: 蓝桥杯2024年第十五届省赛真题-好数

一个整数如果按从低位到高位的顺序&#xff0c;奇数位&#xff08;个位、百位、万位 &#xff09;上的数字是奇数&#xff0c;偶数位&#xff08;十位、千位、十万位 &#xff09;上的数字是偶数&#xff0c;我们就称之为“好数”。给定一个正整数 N&#xff0c;请计算从…

人工智能如何改变你的生活?

在我们所处的这个快节奏的世界里&#xff0c;科技融入日常生活已然成为司空见惯的事&#xff0c;并且切实成为了我们生活的一部分。在这场科技变革中&#xff0c;最具变革性的角色之一便是人工智能&#xff08;AI&#xff09;。从我们清晨醒来直至夜晚入睡&#xff0c;人工智能…

MATLAB - ROS2 ros2genmsg 生成自定义消息(msg/srv...)

系列文章目录 前言 语法 ros2genmsg(folderpath)ros2genmsg(folderpath,NameValue) 一、说明 ros2genmsg(folderpath) 通过读取指定文件夹路径下的 ROS 2 自定义信息和服务定义来生成 ROS 2 自定义信息。函数文件夹必须包含一个或多个 ROS 2 软件包。这些软件包包含 .msg 文件…

LeetCode:19.删除链表倒数第N个节点

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;19.删除链表倒数第N个节点 给你一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表…

探索光耦:光耦安全标准解读——确保设备隔离与安全的重要规范

在现代科技日新月异的今天&#xff0c;光耦&#xff08;光电耦合器&#xff09;作为电子设备中不可或缺的隔离元件&#xff0c;其重要性不言而喻。它不仅在电源调控、工业自动化及医疗设备等关键领域大显身手&#xff0c;更是确保系统电气隔离与运行稳定的守护神。特别是在保障…

ubuntu+ROS推视频流至网络

目录 概述 工具 ros_rtsp 接受流 web_video_server 源码安装 二进制安装 ros接收rtsp视频流 总结 概述 ros_rtsp功能包可以将ros视频流以rtsp形式推送 web_video_server功能包可以将ros视频话题推HTTP流 rocon_rtsp_camera_relay可以接受同一网段下的rtsp视频流输出为…