C语言:深入理解指针

一.内存和地址

我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是 8GB/16GB/32GB 等,那这些内存空间如何高效的管理呢?其实也是把内存划分为⼀个个的内存单元,每个内存单元的大小取1个字节。
在这里稍微补充一下:一个比特位(bit)可以存储⼀个2进制的位1或者0,8个比特位构成一个字节。
1Byte = 8bit
1KB = 1024Byte
1MB = 1024KB
1GB = 1024MB
1TB = 1024GB
1PB = 1024TB
每个内存单元也都有一个编号(这个编号就相当于宿舍房间的门牌号),有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。生活中我们把门牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语言中给地址起了新的名字叫:指针。
所以我们可以理解为:
内存单元的编号 = 地址 = 指针
理解编址:CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,这就需要我们刚才所说的指针了。在计算机中的编址,并不是把每个字节的地址记录下来,而是通过硬件设计完成的。硬件与硬件之间是互相独立的,那么如何通信呢?答案很简单,用"线"连起来。而CPU和内存之间也是有大量的数据交互的,所以,两者必须也用线连起来。不过,我们今天关心一组线,叫做地址总线。硬件编址也是如此我们可以简单理解,32位机器有32根地址总线,每根线只有两态,表示1,0【电脉冲有无】,那么一根线,就能表示2种含义,2根线就能表示4种含义,依次类推。32根地址线,就能表示2^32种含义,每⼀种含义都代表一个地址。地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传入CPU内的寄存器。
03c1a51d81a44f1296408552cd92c9fd.png
二.指针变量和地址
1.取地址操作符
我们使用C语言创建变量时,其实是在向内存申请空间。在这里我们向内存申请4个字节(整型)的空间,用来存放1这个数值。这4个字节,每个字节都有编号(地址)。变量的名字仅仅是给程序员看的,编译器不看名字,编译器是通过地址找内存单元的。
982d5678976042b994e67b5730358675.png
那我们如何能得到a的地址呢?我们可以使用一个操作符(&)-取地址操作符。
f064d92306b54594aaa3c7de72777fef.png
这样我们就可以将a的地址取出来了。当然,&a取出的是a所占4个字节中地址较小的字节的地址。不过没关系,知道了第一个地址也可以顺藤摸瓜地知道另外几个地址了。
2.指针变量和解引用操作符(*)
我们先来看什么是指针变量,那我们通过取地址操作符(&)拿到的地址是⼀个数值,比如:0x006FFD70,这个数值有时候也是需要存储起来,方便后期再使用的,那我们把这样的地址值存放在哪里呢?答案是:指针变量中。 6f357b4f660a4307b400a079a109c08b.png
指针变量也是⼀种变量,这种变量就是用来存放地址的,存放在指针变量中的值都会理解为地址。在上面的代码中,int *是该指针变量的类型,int表示的是该指针指向的对象是整型类型的,而*表示这个变量为指针变量。
接下来,我们来看解引用操作符。我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)指向的对象。这里就需要用到我们刚才说的解引用操作符(*)。
afc3d364a6f84494a716c2ff01d765b3.png
上⾯代码中第7行就使用了解引用操作符,*pa 的意思就是通过pa中存放的地址,找到指向的空间,*pa其实就是a变量了;所以*pa = 0,这个表达式就是把a改成了0。有人会想这里如果目的就是把a改成0的话,写成 a = 0; 不就完了,为啥非要使用指针呢? 其实这里是把a的修改交给了pa来操作,这样对a的修改,就多了一种的途径,写代码就会更加灵活,后期慢慢就能理解了。
3.指针变量的大小
在前面我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产生的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4 个字节才能存储。 如果指针变量是用来存放地址的,那么指针变的大小就得是4个字节的空间才可以。同理64位机器,假设有64根地址线,一个地址就是64个二进制位组成的⼆进制序列,存储起来就需要 8个字节的空间,指针变量的大小就是8个字节。
#include<stdio.h>
int main()
{printf("%zd\n", sizeof(char *));printf("%zd\n", sizeof(int *));printf("%zd\n", sizeof(float *));printf("%zd\n", sizeof(double *));return 0;
}

根据我们在上面得出的结论,上图的代码在两种环境中得出的结果就不相同。8302ff95b736442f9243c10c109a59c6.png

三.指针变量类型的意义

指针变量的大小和类型无关,只要是指针变量,在同一个平台下,大小都是⼀样的,为什么还要有各种各样的指针类型呢?我们接下来慢慢分析。

1.指针的解引用

#include<stdio.h>
int main()
{int n = 0x11223344;char* pc = (char *) & n;*pc = 0;return 0;
}
#include<stdio.h>
int main()
{int n = 0x11223344;int* pc = & n;*pc = 0;return 0;
}
通过调试,我们可以看到,代码2会将n的4个字节全部改为0,但是代码1只是将n的第一个字节改为0。结论:指针的类型决定了,对指针解引用的时候有多大的权限(一次能操作几个字节)。
比如: char* 的指针解引用就只能访问一个字节,而 int* 的指针的解引用就能访问四个字节。
2.指针加减整数
443835666527472097b381c51003b57d.png我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。 这就是指针变量的类型差异带来的变化。指针+1,其实跳过1个指针指向的元素。指针可以+1,那也可以-1。
结论:指针的类型决定了指针向前或者向后走⼀步有多大(距离)。
3.void*指针
在指针类型中有⼀种特殊的类型是 void * 类型的,可以理解为无具体类型的指针(或者叫泛型指针),这种类型的指针可以用来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进行指针的+-整数和解引用的运算。 7a3da95f6283491cb5dc736eda396ecd.png
上图将该指针变量的类型本应该是int*,却使用了char*。所以下面就会报错误——类型不匹配。我们如果使用void*就不会出现这种情况。
四、const 修饰指针
1.const修饰变量
变量是可以修改的,如果把变量的地址交给⼀个指针变量,通过指针变量的也可以修改这个变量。
但是如果我们希望⼀个变量加上⼀些限制,不能被修改,怎么做呢?这就是const的作用。
#include <stdio.h>
int main()
{int m = 0;m = 20;//m是可以修改的const int n = 0;n = 20;//n是不能被修改的return 0;
}
上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n进行修改,就不符合语法规则,就报错,致使没法直接修改n。
前面已经学习了指针,所以如果我们绕过n,使用n的地址,去修改n就能做到了,虽然这样做是在打破语法规则。 dbead977e4204c29bcda493724f68946.png
我们可以看到这里一个确实修改了,但是我们还是要思考⼀下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n,那接下来怎么做呢?
2.const修饰指针变量

一般来讲const修饰指针变量,可以放在*的左边,也可以放在*的右边,意义是不一样的。

#include<stdio.h>
int main()
{int n = 10;int m = 20;int* pn = &n;*pn = 30;pn = &m;printf("%d", *pn);return 0;
}

这是没有const修饰下的效果。

#include<stdio.h>
int main()
{int n = 10;int m = 20;int const * pn = &n;*pn = 30;pn = &m;printf("%d", *pn);return 0;
}

518af7871e434d18a64ac98f7e94571c.png

当我们将const修饰指针变量放在*左边时,*pn就不能被改变了。

#include<stdio.h>
int main()
{int n = 10;int m = 20;int * const pn = &n;*pn = 30;pn = &m;printf("%d", *pn);return 0;
}

8a8af52bdb0c44ff9f9574a626773da6.png

当我们将const修饰指针变量放在*右边时,pn就不能被改变了。

#include<stdio.h>
int main()
{int n = 10;int m = 20;int const* const pn = &n;*pn = 30;pn = &m;printf("%d", *pn);return 0;
}

14166a811bc346f98b963c62e98c9d02.png

当我们将const修饰指针变量放在*两边边时,*pn和pn就都不能被改变了。

所以总的来说:const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本⾝的内容可变。const如果放在*的右边,修饰的是指针变量本⾝,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。
五、指针运算
1.指针+- 整数
指针+- 整数其实我们在前面已经说起过了。因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸瓜就能找到后面的所有元素。 3d166c9013834081b513a36f90246482.png
2.指针-指针
#include<stdio.h>
int my_strlen(char * s)
{char* p = s;while (*p != '\0')p++;return p - s;
}
int main()
{printf("%d", my_strlen("abc"));return 0;
}

在上述代码中,我们就使用了指针-指针实现了strlen函数的效果。

3.指针的关系运算

975b1f2fd703448286e8ab0dd79bf61d.png

六、野指针

野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)。
什么情况会出现野指针呢,我们来分析一下。
1.指针未初始化
#include<stdio.h>
int main()
{int* p;*p = 10;return 0;
}

2.指针越界访问

#include<stdio.h>
int main()
{int arr[5] = { 0 };int* p = &arr[0];int sz = sizeof(arr) / sizeof(arr[0]);for (int i = 0; i <= sz; i++){*p = i;p++;}return 0;
}

3.指针指向的空间释放

#include<stdio.h>
int* test()
{int n = 10;return &n;
}
int main()
{int* p=test();printf("%d", *p);return 0;
}

当test()函数运行完时,n作为局部变量,内存将被回收。

七、如何规避野指针

1.指针初始化

如果明确知道指针指向哪里就直接赋值地址,如果不知道指针应该指向哪里,可以给指针赋值NULL。NULL 是C语言中定义的⼀个标识符常量,值是0,0也是地址,这个地址是无法使用的,读写该地址会报错。
#include<stdio.h>
int main()
{int* p= NULL;return 0;
}

2.小心指针越界

⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。
3.指针变量不再使用时,及时置NULL,指针使用之前检查有效性
当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使用这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问,同时使用指针之前可以判断指针是否为NULL。
#include<stdio.h>
int main()
{int arr[5] = { 0 };int* p= &arr[0];for (int i = 0; i < 5; i++){*(p + i) = i;}//此时p已经越界了,可以把p置为NULLp = NULL;p = &arr[3];//重新让p获得地址//下次使⽤的时候,判断p不为NULL的时候再使⽤if (p != NULL){//......}return 0;
}

4.避免返回局部变量的地址

如造成野指针的第3个例子,不要返回局部变量的地址。
八、assert 断言
assert.h 头文件定义了宏 assert() ,用于在运行时确保程序符合指定条件,如果不符合,就报错终止运行。这个宏常常被称为“断言”。
assert(p != NULL);
上面代码在程序运行到这一行语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序继续运用,否则就会终止运行,并且给出报错信息提示。assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值非零), assert() 不会产生任何作用,程序继续运行。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误流 stderr 中写入一条错误信息,显示没有通过的表达式,以及包含这个表达式的文件名和行号。
使用 assert() 有几个好处:它不仅能自动标识文件和出问题的行号,还有⼀种无需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问题,不需要再做断言,就在 #include<assert.h> 语句的前面,定义⼀个宏 NDEBUG
#define NDEBUG
#include <assert.h>
 
然后,重新编译程序,编译器就会禁用文件中所有的 assert() 语句。如果程序有出现问题,可以移除这条 #define NDEBUG 指令(或者把它注释掉),再次编译,这样就重新启用了 assert() 语句。assert() 的缺点是,因为引⼊了额外的检查,增加了程序的运用时间。一般我们可以在 Debug 中使用,在 Release 版本中选择禁用 assert 就行,在 VS 这样的集成开发环境中,在 Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,在 Release 版本不影响用户使用时程序的效率。
九、指针的使用和传址调用
1.strlen的模拟实现
库函数strlen的功能是求字符串长度,统计的是字符串中 \0 之前的字符的个数。
函数原型如下:
size_t strlen ( const char * str );
参数str接收⼀个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回长度。
如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直到 \0 就停止。
int length(const char* s)//防止*s在函数中被改变
{int count = 0;assert(s);//通过断言防止野指针while (*s){count++;s++;}return count;
}

2.传值调用和传址调用

a7c49d1b43a34ce0bb2673b894d68b5c.png

上面的调用就是传值调用,我们可以看出用这个方法交换数值很明显是错的,因为实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实参。那我们通过地址间接的操作main函数中的a和b,并达到交换的效果就好了。
#include<stdio.h>
void test(int* pa, int* pb)
{int item;item = *pa;*pa = *pb;*pb = item;
}
int main()
{int a = 1, b = 2;int* pa = &a;int* pb = &b;test(pa, pb);printf("%d %d", a, b);return 0;
}

我们将是a,b的地址作为实参传递给test函数,再通过解引用操作符的作用,我们可以将a,b所对应的数值进行交换。这种调用就叫传址调用。传址调用,可以让函数和主调函数之间建立真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采用传值调用。如果函数内部要修改主调函数中的变量的值,就需要传址调用。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/480383.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot整合EasyExcel

文章目录 EasyExcel简介Spring Boot整合EasyExcel一、单sheet写操作二、多sheet写数据三、读操作 EasyExcel简介 1、EasyExcel 是一个基于 Java 的简单、省内存的读写 Excel 的开源项目。在尽可能节约内存的情况下支持读写百 M 的 Excel&#xff08;没有一次性将数据读取到内存…

Windsurf可以上传图片开发UI了

背景 曾经羡慕Cursor的“画图”开发功能&#xff0c;这不Windsurf安排上了。 Upload Images to Cascade Cascade now supports uploading images on premium models Ask Cascade to build or tweak UI from on image upload New keybindings Keybindings to navigate betwe…

Linux中使用ping提示“未知的名称或服务”

Linux中使用ping提示“未知的名称或服务” 问题&#xff1a;在linux系统中使用ping、telnet命令提示“未知的名称或服务”或 bad address。以centos系统为例&#xff1a; 问题原因&#xff1a; 1、未安装ping服务 2、操作系统未设置DNS&#xff08;尝试ping IP地址&#xff0…

【C++】深入解析 using namespace std 语句

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;什么是 std&#xff1f;&#x1f4af;using namespace std; 的作用&#x1f4af;为什么需要 std 命名空间&#xff1f;&#x1f4af;using namespace std; 的优缺点优点缺点…

Android音频框架总结

1、AudioFlinger&#xff1a;接收多个APP的数据&#xff0c;合并下发&#xff1b;是策略的执行者&#xff0c;例如具体如何与音频设备通信&#xff0c;如何维护现有系统中的音频设备&#xff0c;以及多个音频流的混音如何处理等等都得由它来完 成。 AudioFlinger主要包含3个主…

Jenkins Nginx Vue项目自动化部署

目录 一、环境准备 1.1 Jenkins搭建 1.2 NVM和Nodejs安装 1.3 Nginx安装 二、Jenkins配置 2.1 相关插件安装 2.2 全局工具安装 2.3 环境变量配置 2.4 邮箱配置&#xff08;构建后发送邮件&#xff09; 2.5 任务配置 三、Nginx配置 3.1 配置路由转发 四、部署项目 …

BASLER工业相机维修不能触发拍照如何处理解决这个问题

BASLER工业相机维修不能触发拍照如何处理解决这个问题&#xff1f;最近遇到挺多工业相机维修咨询这个不能触发拍照的案例&#xff0c;所以今天优米佳维修的技术就抽空整理了这篇关于BASLER相机不能触发拍照的处理方法分享给大家。 当碰到巴斯勒工业相机不能触发拍照的问题&…

68000汇编实战01-编程基础

文章目录 简介产生背景应用领域 语言学习EASy68K帮助文档IDE使用 编程语言commentslabels开始标签指令标签位置标签 opcode 操作码常用操作码数据传送算术运算逻辑运算控制流分支跳转地址跳转子程序跳转 位操作比较堆栈操作 IO操作码其他操作码 directives 指令DC指令EQU 指令S…

wsl2的Ubuntu18.04安装ros和anaconda

参考&#xff1a;超详细 WSL2 安装 ros 和 anaconda_wsl2安装anaconda-CSDN博客 一.安装ros 1. 更换系统源 输入 wget http://fishros.com/install -O fishros && . fishros 和上面的链接一样&#xff0c;依次输入5-2-1 2. 安装ros 输入 wget http://fishros.c…

如何为 ext2/ext3/ext4 文件系统的 /dev/centos/root 增加 800G 空间

如何为 ext2/ext3/ext4 文件系统的 /dev/centos/root 增加 800G 空间 一、引言二、检查当前磁盘和分区状态1. 使用 `df` 命令检查磁盘使用情况2. 使用 `lsblk` 命令查看分区结构3. 使用 `fdisk` 或 `parted` 命令查看详细的分区信息三、扩展逻辑卷(如果使用 LVM)1. 检查 LVM …

【Linux打怪升级记 | 报错02】-bash: 警告:setlocale: LC_TIME: 无法改变区域选项 (zh_CN.UTF-8)

&#x1f5fa;️博客地图 &#x1f4cd;1、报错发现 &#x1f4cd;2、原因分析 &#x1f4cd;3、解决办法 &#x1f4cd;4、测试结果 1、报错发现 装好了CentOS操作系统&#xff0c;使用ssh远程登陆CentOS&#xff0c;出现如下告警信息&#xff1a; bash: 警告:setlocale…

【数据结构】双向链表、单向循环链表、双向循环链表、栈、链栈

目录 一、双向链表 定义类和封装函数以及测试样例如下&#xff1a; 注意事项&#xff1a; 二、循环链表 单循环列表的类和函数封装如下&#xff1a; 注意事项&#xff1a; 三、双向循环链表 结点类和双循环链表的定义部分 函数封装之判空和尾插 双循环链表遍历 双循…

week 6 - SQL Select II

Overview 1. Joins 包括交叉连接&#xff08;Cross&#xff09;、内连接&#xff08;Inner&#xff09;、自然连接&#xff08;Natural&#xff09;、外连接&#xff08;Outer&#xff09; 2. ORDER BY to produce ordered output 3. 聚合函数&#xff08;Aggregate Functio…

systemverilog约束中:=和:/的区别

“x dist { [100:102] : 1, 200 : 2, 300 : 5}” 意味着其值等于100或101或102或200或300其中之一&#xff0c; 其权重比例为1:1:1:2:5 “x dist { [100:102] :/ 1, 200 : 2, 300 : 5}” 意味着等于100&#xff0c;101&#xff0c;102或200&#xff0c;或300其…

[Python/网络安全] Git漏洞之Githack工具基本安装及使用详析

前言 本文仅分享Githack工具基本安装及使用相关知识&#xff0c;不承担任何法律责任。 Git是一个非常流行的开源分布式版本控制系统&#xff0c;它被广泛用于协同开发和代码管理。许多网站和应用程序都使用Git作为其代码管理系统&#xff0c;并将其部署到生产环境中以维护其代…

NFT Insider #157:The Sandbox 开启新一期 VoxEdit 比赛

市场数据 加密艺术及收藏品新闻 Artnames 项目上线&#xff0c;将用户姓名转化为个性化 NFT 艺术品 由知名数字艺术家 Arrotu 发起的生成艺术项目「Artnames」正式上线&#xff0c;利用区块链技术将用户姓名转化为独一无二的 NFT 艺术品。该项目于 11 月 14 日启动&#xff0…

计算机是如何工作的

1. 冯诺依曼体系 CPU 中央处理器: 进行算术运算和逻辑判断 存储器: 分为外存和内存, 用于存储数据(使用二进制方式存储) 输入设备: 用户给计算机发号施令的设备 输出设备: 计算机个用户汇报结果的设备 1&#xff09;针对存储空间&#xff1a; 硬盘 > 内存 >> CPU …

简单好用的折线图绘制!

折线图的概念及作用&#xff1a; 折线图&#xff08;Line Chart&#xff09;是一种常见的图表类型&#xff0c;用于展示数据的变化趋势或时间序列数据。它通过一系列的数据点&#xff08;通常表示为坐标系中的点&#xff09;与这些点之间的线段相连&#xff0c;直观地展示变量…

【拥抱AI】Milvus 如何处理 TB 级别的大规模向量数据?

处理 TB 级别的大规模向量数据是 Milvus 的核心优势之一。Milvus 通过分布式架构、高效的索引算法和优化的数据管理策略来实现这一目标。下面将详细介绍 Milvus 如何处理 TB 级别向量数据的流程&#xff0c;包括插入代码示例、指令以及流程图。 1. 分布式架构 Milvus 使用分…

Scrapy管道设置和数据保存

1.1 介绍部分&#xff1a; 文字提到常用的Web框架有Django和Flask&#xff0c;接下来将学习一个全球范围内流行的爬虫框架Scrapy。 1.2 内容部分&#xff1a; Scrapy的概念、作用和工作流程 Scrapy的入门使用 Scrapy构造并发送请求 Scrapy模拟登陆 Scrapy管道的使用 Scrapy中…