特征选择
1.1 原理
特征选择是选择对模型训练最重要的特征,减少数据维度,去除冗余或不相关特征,提高模型性能的性能和训练速度,减少过拟合。
1.2 核心公式
可以使用基于树模型的特征重要性度量,如在随机森林中计算特征的重要性:
其中,Ii,j是第j棵树中特征Xi的重要性度量。
假设使用基于Gini系数的特征重要性计算方法,单棵树的特征重要性可以表示为:
其中,T是所有包含特征Xi的节点,Nt是节点t的样本数量,N是总样本数量,是节点t上的Ginit系数变化。
1.3 Python案列
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest, f_classif,␣
,
→mutual_info_classif
from sklearn.preprocessing import StandardScaler
# 加载数据集
data = load_iris()
X = data.data
y = data.target
# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 特征选择方法
selectors = [
('SelectKBest_f_classif', SelectKBest(score_func=f_classif, k=2)),
('SelectKBest_mutual_info_classif',␣
,
→SelectKBest(score_func=mutual_info_classif, k=2))
]
# 绘制图形
plt.figure(figsize=(14, 6))
for i, (name, selector) in enumerate(selectors):
plt.subplot(1, 2, i + 1)
X_new = selector.fit_transform(X_scaled, y)
mask = selector.get_support()
plt.scatter(X_new[:, 0], X_new[:, 1], c=y, edgecolor='k', s=50)
plt.title(f'{name} Feature Selection')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.tight_layout()
plt.show()
特征缩放
2.1 原理
减少特征值范围的差异,帮助某些算法更快收敛,常用于标准化和归一化之外的方法。
2.2 核心公式
最大最小缩放
其中,Xmax和Xmin分别是特征的最大值和最小值。
对数变换
其中,加1是为了避免对数零或负值问题。
2.3 Python案例
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# 加载Iris数据集
iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df['species'] = iris.target
# 原始数据集的散点图
sns.pairplot(df, hue='species', markers=['o', 's', 'D'])
plt.suptitle('Original Data', y=1.02)
plt.show()
# 标准化
scaler = StandardScaler()
#data_standardized = scaler.fit_transform(df.iloc[:,:-1])
#df_standardized = pd.DataFrame(data_standardized, columns=iris.feature_names)
df_standardized = pd.DataFrame(scaler.fit_transform(df.iloc[:, :-1]),␣
,
→columns=iris.feature_names)
df_standardized['species'] = df['species']
# 标准化数据集的散点图
sns.pairplot(df_standardized, hue='species', markers=['o', 's', 'D'])
plt.suptitle('Standardized Data', y=1.02)
plt.show()
# 最小最大缩放
scaler = MinMaxScaler()
df_minmax = pd.DataFrame(scaler.fit_transform(df.iloc[:, :-1]), columns=iris.
,
→feature_names)
df_minmax['species'] = df['species']
# 最小最大缩放数据集的散点图
sns.pairplot(df_minmax, hue='species', markers=['o', 's', 'D'])
plt.suptitle('Min-Max Scaled Data', y=1.02)
plt.show()
特征构造
3.1 原理
特征构造可以中的隐藏关系,提升模型表现。
3.2 Python案例
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 生成示例数据
np.random.seed(42)
data = pd.DataFrame({
'area': np.random.randint(1000, 3500, 100),
'bedrooms': np.random.randint(1, 5, 100),
'bathrooms': np.random.randint(1, 3, 100),
'price': np.random.randint(100000, 500000, 100)
})
# 构造新特征
data['price_per_sqft'] = data['price'] / data['area']
data['bed_bath_ratio'] = data['bedrooms'] / data['bathrooms']
# 绘制图形
plt.figure(figsize=(14, 6))
# 图形1:价格与每平方英尺价格的关系
plt.subplot(1, 2, 1)
sns.scatterplot(x=data['area'], y=data['price_per_sqft'])
plt.title('Price per Square Foot vs Area')
plt.xlabel('Area (sqft)')
plt.ylabel('Price per Square Foot ($)')
# 图形2:价格与卧室-浴室比例的关系
plt.subplot(1, 2, 2)
sns.scatterplot(x=data['bed_bath_ratio'], y=data['price'])
plt.title('Price vs Bedroom-Bathroom Ratio')
plt.xlabel('Bedroom-Bathroom Ratio')
plt.ylabel('Price ($)')
plt.tight_layout()
plt.show()
# 更多图形
plt.figure(figsize=(14, 6))
# 图形3:面积与价格的关系
plt.subplot(1, 2, 1)
sns.scatterplot(x=data['area'], y=data['price'])
plt.title('Area vs Price')
plt.xlabel('Area (sqft)')
plt.ylabel('Price ($)')
# 图形4:每平方英尺价格的分布
plt.subplot(1, 2, 2)
sns.histplot(data['price_per_sqft'], kde=True)
plt.title('Distribution of Price per Square Foot')
plt.xlabel('Price per Square Foot ($)')
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()