【人工智能基础06】人工神经网络(练习题):神经网络的计算、激活函数的选择与神经网络的退化

文章目录

    • 1. 基于神经网络计算心理健康程度
    • 2. 添加激活函数的神经网络计算
    • 3. 使用神经网络预测小胖是否会变胖
    • 4. 激活函数选择的讨论
    • 5. 神经网络的设计
    • 6. 深度线性模型的表达能力=线性模型
    • 7. 神经网络退化

主要讨论的内容

  • 什么是人工神经网络,相关计算
  • 反向传播算法的原理,并会计算
  • 常用的优化器有哪些,了解几个典型的优化器(4种)
  • 权值初始化的方法有哪些以及适应场景?(Xavier、Kaiming)
  • 权值共享的基本原理是什么?

1. 基于神经网络计算心理健康程度

在这里插入图片描述

  1. 其实就是计算矩阵相乘?
  2. 注意是线性层的转置

在这里插入图片描述

 

2. 添加激活函数的神经网络计算

在这里插入图片描述

  1. ReLU函数数学表达式:

    • R e L U ( x ) = max ⁡ ( 0 , x ) ReLU(x)=\max(0,x) ReLU(x)=max(0,x)
    • 当(x > 0)时, R e L U ( x ) = x ReLU(x)=x ReLU(x)=x;当 x ⩽ 0 x\leqslant0 x0时, R e L U ( x ) = 0 ReLU(x) = 0 ReLU(x)=0
  2. 注意:是矩阵计算之后再叠加ReLU函数。

 

3. 使用神经网络预测小胖是否会变胖

在这里插入图片描述

在这里插入图片描述

 

4. 激活函数选择的讨论

在这里插入图片描述

 

在神经网络中,优化主要通过反向传播算法来实现。反向传播算法依赖于计算损失函数对网络中各参数的梯度,然后根据梯度来更新参数,以最小化损失函数。

  1. Sigmoid函数的问题

    • Sigmoid函数的表达式为 y = 1 1 + e − x y = \frac{1}{1 + e^{-x}} y=1+ex1,其导数为 y ′ = y ( 1 − y ) y'=y(1 - y) y=y(1y)。当 x x x的值远离0时(即 x x x很大或很小),Sigmoid函数的输出会趋近于0或1。此时,Sigmoid函数的导数 y ′ y' y会趋近于0。
    • 在反向传播过程中,梯度是通过链式法则逐层传递的。如果某一层的激活函数的导数非常小,那么在反向传播时,梯度会变得更小,导致梯度消失问题。这会使得网络的训练变得非常缓慢,甚至无法收敛。
  2. ReLU函数的优势

    • ReLU函数的表达式为 y = max ⁡ ( 0 , x ) y=\max(0,x) y=max(0,x)。 当(x > 0)时,ReLU函数的导数为1;当 x ≤ 0 x \leq 0 x0时,导数为0。
    • ReLU函数的梯度在(x>0)的区域非常容易计算(恒为1),这使得在反向传播过程中,梯度能够较为稳定地传递,不会出现梯度消失的问题。这对于优化算法来说是非常方便的,能够加快网络的训练速度。

综上所述,从优化的角度来看,由于Sigmoid函数在远离0点时导数非常小,会影响优化过程,而ReLU函数的梯度容易计算,对优化过程非常方便,所以在实际应用中人们会优先选择ReLU作为激活函数,而不是Sigmoid。

 

5. 神经网络的设计

在这里插入图片描述

分析:这个问题描述了一种针对已经训练好的神经网络 f f f的攻击场景。给定一个类别为 y y y的图像 x x x,通过优化一个小的扰动 δ \delta δ,使得 x ′ = x + δ x' = x+\delta x=x+δ在视觉上与 x x x几乎相同,但神经网络 f f f却错误地将 x ′ x' x分类为非 y y y类别。问题询问这种精心构造的 x ′ x' x是否会对神经网络的准确性产生负面影响。

  1. 肯定是弊端
    • 对神经网络准确性的破坏:在实际应用中,神经网络的准确性至关重要。例如在图像分类中,如果攻击者能够找到这样的 δ \delta δ,那么他们可以轻易地误导神经网络做出错误的分类。
    • 实际应用中的危害
      • 自动驾驶场景:在自动驾驶应用中,如果攻击者对交通标志进行微小的、人眼难以察觉的修改(相当于找到合适的 δ \delta δ),可能会导致自动驾驶汽车误判交通标志,从而做出错误的驾驶决策,甚至引发交通事故。
      • 安防监控场景:在安防监控领域,如果攻击者能够对监控图像进行类似的修改,可能会使监控系统无法正确识别人员或物体,导致安防漏洞。
  2. 可能不是弊端(在某些特定场景下)从研究和防御的角度
    • 如果从研究和防御的角度来看,这种现象也可以促使研究人员深入研究对抗攻击和防御机制。例如,研究人员可以通过研究这种攻击方式,开发出更强大的防御算法来提高神经网络的鲁棒性
    • 这种攻击方式可以被看作是对神经网络的一种压力测试,通过发现这些潜在的漏洞,可以促使技术不断进步,使神经网络在面对各种攻击时更加稳健。

 

6. 深度线性模型的表达能力=线性模型

在这里插入图片描述

 

7. 神经网络退化

在这里插入图片描述

神经网络的基本结构:一般的神经网络由输入层、若干隐藏层和输出层组成。每一层都有若干神经元,神经元之间通过权重连接。输入数据经过多层的加权计算和激活函数的变换,最终得到输出。

Logistic回归是一种用于二分类问题的线性模型。它的数学表达式为 y = 1 1 + e − ( w T x + b ) y = \frac{1}{1 + e^{-(w^T x + b)}} y=1+e(wTx+b)1,其中 w w w是权重向量, x x x是输入向量, b b b是偏置项。这个表达式中的 1 1 + e − z \frac{1}{1 + e^{-z}} 1+ez1部分就是Sigmoid函数。

 

当神经网络只有一层且激活函数为Sigmoid函数时:设输入为 x x x,权重为 w w w,偏置为 b b b,那么这一层的输出就是 y = σ ( w T x + b ) y=\sigma(w^T x + b) y=σ(wTx+b),其中 σ \sigma σ是Sigmoid函数。这与Logistic回归的表达式完全相同。也就是说,这种情况下的神经网络实际上就是在做Logistic回归。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/486741.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记录Windows中Mysql安装

www.mysql.com 我用的是mysql-installer-community-8.0.25.0.msi 原先安装过,先听了了mysql服务 ctrlshiftesc 先停了服务 控制面板关于mysql的全卸载 不修改的话,默认 如果不修改 自己电脑C盘不想放太多 这里Config Type有三个选项 第一个是测试开发模式 占用内存…

【Java计算机毕业设计】Springboot+vue校园外卖配送服务管理系统【源代码+数据库+LW文档+开题报告+答辩稿+部署教程+代码讲解】

源代码数据库LW文档(1万字以上)开题报告答辩稿 部署教程代码讲解代码时间修改教程 一、开发工具、运行环境、开发技术 开发工具 1、操作系统:Window操作系统 2、开发工具:IntelliJ IDEA或者Eclipse 3、数据库存储&#xff1a…

彻底理解ThreadLocal的应用场景和底层实现

一.概念 定义: ThreadLocal 是 Java 中所提供的线程本地存储机制,可以利用该机制将数据缓存在某个线程内部,该线程可以在任意时刻、任意方法中获取缓存的数据。 其实是可以通过调用 Set() 方法往里面存入值,存入的值是每个线程互…

Linux下redis环境的搭建

1.redis的下载 redis官网下载redis的linux压缩包,官网地址:Redis下载 网盘链接: 通过网盘分享的文件:redis-5.0.4.tar.gz 链接: https://pan.baidu.com/s/1cz3ifYrDcHWZXmT1fNzBrQ?pwdehgj 提取码: ehgj 2.redis安装与配置 将包上传到 /…

使用 pyperclip 进行跨平台剪贴板操作

简介:pyperclip 是一个轻量级的 Python 库,支持在不同操作系统(Windows、macOS、Linux)中进行剪贴板的复制和粘贴。这个库的设计简单易用,非常适合需要频繁进行文本复制粘贴操作的场景。 历史攻略: 使用f…

什么是初积分

在学习《高等动力学》时碰到一个概念“初积分”,为了方便记忆,在这里做个笔记。 1 定义 在常微分方程理论中,初积分是指对于一个给定的常微分方程组,如果存在一个可微函数,使得沿方程组的任何解,函数的值…

S32K324 HSE使用注意事项

文章目录 前言HSE安装完成后APP无法运行问题描述问题产生原因解决方案APP偶发获取不到HSE版本问题描述问题产生原因解决方案使能XRDC后,APP与HSE无法通信问题描述问题产生原因解决方案总结前言 在HSE使用过程中,出现过一些必现和偶发的问题,本文总结一下问题原因和解决方案…

fastadmin 登录退出忽略中间提示页面

背景 研究了一圈CMS,从fastadmin、easyadmin、buildadmin、onethink等等几乎所有的框架CMS,当然也包括若依。 最后,根据当前项目综合考虑,还是选择的fastadmin: 预算经济实惠、维护成本低;工期端&#x…

DApp开发前端框架选择:React还是Vue?

在区块链DApp开发中,前端框架的选择对用户体验和开发效率至关重要。React和Vue作为两大主流前端框架,各自拥有广泛的开发者基础和丰富的生态支持。那么在DApp开发中,该如何选择适合自己的框架呢?下面我们来比较一下,看…

证明网络中的流形成一个凸集

证明网络中的流形成一个凸集 步骤1:定义和符号步骤2:线性组合步骤3:验证容量限制步骤4:验证流量守恒结论示例代码(C语言) 在网络流理论中,一个流 f f f 是定义在网络图的边集上的一种函数&…

opencv复习

目录 1.core 1.图像变换 1.1 affine仿射变换 1.2 透视变换 2.四元数(旋转) 2.1 轴角转四元数 2.2 旋转矩阵转四元数 2.3 欧拉角转旋转矩阵 2.4 四元数转旋转矩阵 2.5 四元数用eigen用的比较多 2. imgproc. Image Processing 2.1 bilateralF…

分治_归并_归并排序(逆序对)

912. 排序数组 上一次我们做这道题时用的是数组划分三块的思想搭配随机选择基准元素的⽅法。 随机选择一个数,以这个数key为基准划分数组,小于key的数在左边,大于key的数在右边。再把被划分的两部份再找key值划分,直到只剩1或者0个…

环境兼容: Vue3+ELement-plus

题目:环境兼容: Vue3ELement-plus 前言 身为小白的我也在负责一个项目咯,开发的是Vue3项目,然后就搜阅多篇文章,整理了这个。内容很多是转载的,拼成的我这个文章。 Element-plus简介 Element-plus 是基于…

UE5基本数据类型

bool: 表示布尔值,只有两个取值:true 或 false,用于表示逻辑条件。int8: 表示 8 位的有符号整数,范围是 −128−128 到 127127。uint8: 表示 8 位的无符号整数,范围是 00 到 255255。int16: 表示 16 位的有符号整数&am…

【SpringMVC】参数传递 重定向与转发 REST风格

文章目录 参数传递重定向与转发REST风格 参数传递 ModelAndView:包含视图信息和模型数据信息 public ModelAndView index1(){// 返回页面ModelAndView modelAndView new ModelAndView("视图名");// 或// ModelAndView modelAndView new ModelAndView(…

软件工程 概述

软件 不仅仅是一个程序代码。程序是一个可执行的代码,它提供了一些计算的目的。 软件被认为是集合可执行的程序代码,相关库和文档的软件。当满足一个特定的要求,就被称为软件产品。 工程 是所有有关开发的产品,使用良好定义的&…

【数字化】华为企业数字化转型-认知篇

导读:企业数字化转型的必要性在于,它能够帮助企业适应数字化时代的需求,提升运营效率,创新业务模式,增强客户互动,从而在激烈的市场竞争中保持领先地位并实现可持续发展。通过学习华为企业数字化转型相关理…

Android学习15--charger

1 概述 最近正好在做关机充电这个,就详细看看吧。还是本着保密的原则,项目里的代码也不能直接用,这里就用的Github的。https://github.com/aosp-mirror 具体位置是:https://github.com/aosp-mirror/platform_system_core/tree/mai…

Leetcode刷题(81~90)

算法是码农的基本功,也是各个大厂必考察的重点,让我们一起坚持写题吧。 遇事不决,可问春风,春风不语,即是本心。 我们在我们能力范围内,做好我们该做的事,然后相信一切都事最好的安排就可以啦…

ARINC 标准全解析:航空电子领域多系列标准的核心内容、应用与重要意义

ARINC标准概述 ARINC标准是航空电子领域一系列重要的标准规范,由航空电子工程委员会(AEEC)编制,众多航空公司等参与支持。这些标准涵盖了从飞机设备安装、数据传输到航空电子设备功能等众多方面,确保航空电子系统的兼…