卷积神经网络的猫狗识别

文章目录

  • 一、准备工作
  • 二、猫狗识别
    • 2.1、下载数据集
      • 2.1.1、 图片分类
      • 2.1.2、图片数量统计
    • 2.2、卷积神经网络CNN
      • 2.2.1、网络模型搭建
      • 2.2.2、图像生成器读取文件中数据
      • 2.2.3、训练
      • 2.2.4、保存模型
      • 2.2.5、结果可视化
    • 2.3、对模型进行调整
      • 2.3.1、图像增强方法
      • 2.3.2、模型调整
      • 2.3.3、保存模型
      • 2.3.4、绘制结果

一、准备工作

由于anaconda3中keras,tensorflow和Python版本对应的问题,如果不提前解决好的话后面会不停报错,然后就得重新再做,所以最好一开始就先把这些问题解决。
①首先,打开anaconda先新建一个环境,选择python3.6
②打开anaconda prompt,先激活刚才新建的环境

activate 名字

③下载相关库tensorflow(默认下载的一般都是2.X,后面就会各种报错,版本不支持,所以这里指定下载版本,我下的是1.10.0)

conda install --channel https://conda.anaconda.org/anaconda tensorflow=1.10.0 

④下载keras(可以自己去找一下对应版本,tensorflow1.10对应keras2.2.0)
在这里插入图片描述

pip install keras==2.2.0

⑤下载完之后可以测试一下
在这里插入图片描述
注意:这里可以再看一下numpy的版本,如果版本过高后面也会报错,所以提前看一下如果版本高于1.16可以先卸载重新安装符合要求的版本。
(还有些东西可以中途报错之后再去装,装完之后重新执行那一步就行了)

二、猫狗识别

2.1、下载数据集

(这里使用的数据集是从Kaggle网站上下载的)
在这里插入图片描述
这是分类之后的目录:
在这里插入图片描述

2.1.1、 图片分类

import os, shutil
# The path to the directory where the original
# dataset was uncompressed
original_dataset_dir = 'D:/wulianwang/louloulou/kaggle_Dog&Cat/train'# The directory where we will
# store our smaller dataset
base_dir = 'D:/wulianwang/louloulou/kaggle_Dog&Cat/find_cats_and_dogs'
os.mkdir(base_dir)# Directories for our training,
# validation and test splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)# Directory with our training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)# Directory with our training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)# Directory with our validation cat pictures
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)# Directory with our validation dog pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)# Directory with our validation cat pictures
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)# Directory with our validation dog pictures
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)# Copy first 1000 cat images to train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(train_cats_dir, fname)shutil.copyfile(src, dst)# Copy next 500 cat images to validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(validation_cats_dir, fname)shutil.copyfile(src, dst)# Copy next 500 cat images to test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(test_cats_dir, fname)shutil.copyfile(src, dst)# Copy first 1000 dog images to train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(train_dogs_dir, fname)shutil.copyfile(src, dst)# Copy next 500 dog images to validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(validation_dogs_dir, fname)shutil.copyfile(src, dst)# Copy next 500 dog images to test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:src = os.path.join(original_dataset_dir, fname)dst = os.path.join(test_dogs_dir, fname)shutil.copyfile(src, dst)

在这里插入图片描述

2.1.2、图片数量统计

print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))

在这里插入图片描述
猫狗训练图片各1000张,验证图片各500张,测试图片各500张。

2.2、卷积神经网络CNN

2.2.1、网络模型搭建

from keras import layers
from keras import modelsmodel = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()

在这里插入图片描述

2.2.2、图像生成器读取文件中数据

from keras import optimizersmodel.compile(loss='binary_crossentropy',optimizer=optimizers.RMSprop(lr=1e-4),metrics=['acc'])
from keras.preprocessing.image import ImageDataGenerator# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)train_generator = train_datagen.flow_from_directory(# This is the target directorytrain_dir,# All images will be resized to 150x150target_size=(150, 150),batch_size=20,# Since we use binary_crossentropy loss, we need binary labelsclass_mode='binary')validation_generator = test_datagen.flow_from_directory(validation_dir,target_size=(150, 150),batch_size=20,class_mode='binary')

在这里插入图片描述

2.2.3、训练

for data_batch, labels_batch in train_generator:print('data batch shape:', data_batch.shape)print('labels batch shape:', labels_batch.shape)break
history = model.fit_generator(train_generator,steps_per_epoch=100,epochs=30,validation_data=validation_generator,validation_steps=50)

在这里插入图片描述
在这里插入图片描述

2.2.4、保存模型

model.save('cats_and_dogs_small_1.h5')

在这里插入图片描述

2.2.5、结果可视化

import matplotlib.pyplot as pltacc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(len(acc))plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()plt.figure()plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()plt.show()

在这里插入图片描述

2.3、对模型进行调整

2.3.1、图像增强方法

datagen = ImageDataGenerator(rotation_range=40,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True,fill_mode='nearest')
# This is module with image preprocessing utilities
from keras.preprocessing import imagefnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]# We pick one image to "augment"
img_path = fnames[3]# Read the image and resize it
img = image.load_img(img_path, target_size=(150, 150))# Convert it to a Numpy array with shape (150, 150, 3)
x = image.img_to_array(img)# Reshape it to (1, 150, 150, 3)
x = x.reshape((1,) + x.shape)# The .flow() command below generates batches of randomly transformed images.
# It will loop indefinitely, so we need to `break` the loop at some point!
i = 0
for batch in datagen.flow(x, batch_size=1):plt.figure(i)imgplot = plt.imshow(image.array_to_img(batch[0]))i += 1if i % 4 == 0:breakplt.show()

在这里插入图片描述
在这里插入图片描述

2.3.2、模型调整

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))model.compile(loss='binary_crossentropy',optimizer=optimizers.RMSprop(lr=1e-4),metrics=['acc'])
train_datagen = ImageDataGenerator(rescale=1./255,rotation_range=40,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True,)# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)train_generator = train_datagen.flow_from_directory(# This is the target directorytrain_dir,# All images will be resized to 150x150target_size=(150, 150),batch_size=32,# Since we use binary_crossentropy loss, we need binary labelsclass_mode='binary')validation_generator = test_datagen.flow_from_directory(validation_dir,target_size=(150, 150),batch_size=32,class_mode='binary')history = model.fit_generator(train_generator,steps_per_epoch=100,epochs=100,validation_data=validation_generator,validation_steps=50)

在这里插入图片描述

2.3.3、保存模型

model.save('cats_and_dogs_small_2.h5')

2.3.4、绘制结果

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(len(acc))plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()plt.figure()plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/48875.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python基于keras训练简单微笑识别

文章目录 一、数据预处理二、训练模型创建模型训练模型训练结果 三、预测效果 四、源代码pretreatment.pytrain.pypredict.py 一、数据预处理 实验数据来自genki4k 提取含有完整人脸的图片 def init_file():num 0bar tqdm(os.listdir(read_path))for file_name in bar:bar…

猫狗识别与分类

猫狗识别与分类 文章目录 猫狗识别与分类一、前言二、环境配置三、源码以及数据集四、基础猫狗识别程序如下1、train.pytrain.py程序结构: 2、detect.pydetect.py程序结构: 五、配置环境过程1、打开Anaconda Prompta、创建一个叫MNIST4的环境b、创建成功…

基于卷积神经网络(CNN)的猫狗识别

目录 引言 1.什么是卷积神经网络? 1.1什么是神经网络? 1.2什么是卷积? 2.准备工作 2.1一些知识: 2.2keras 2.3Conv2D 2.4 MaxPooling2D 3.基于卷积神经网络的猫狗识别 3.1导入必要库 3.2模型定义 3.3实例化模型并训练…

使用卷积神经网络构建图像分类模型检测肺炎

在本篇文章中,我将概述如何使用卷积神经网络构建可靠的图像分类模型,以便从胸部x光图像中检测肺炎的存在。 肺炎是一种常见的感染,它使肺部的气囊发炎,引起呼吸困难和发烧等症状。尽管肺炎并不难治疗,但及时诊断是至关…

实验3:卷积神经网络图像分类

卷积神经网络图像分类 1 理解卷积神经网络1.1 搭建环境1.2 猫狗分析实例 2 卷积神经网络2.1 网络模型搭建2.2 使用图像生成器读取图片 本次实验将完成以下任务: 按照 python笔记本深度学习,利用TensorFlow和Keras,自己搭建卷积神经网络完成狗猫数据集的分…

Python-猫狗数据集两阶段分类 原始数据直接训练;数据增强后训练

本博客运行环境为Jupyter Notebook-Python3.7。 由于我使用的是Anaconda3配置的jupyter环境,我也将直接在anaconda下搭建keras环境。 博客目录 下载tensorflow、keras下载数据集并重新划分数据预处理训练数据增强 由于我电脑性能不是很好,又是AMD显卡的…

python+基于Jupyter notebook完成卷积神经网络笑脸识别

一、用卷积神经网络实现,做笑脸、非笑脸等表情识别 1.数据集 2.将下载里面的datasets,放到D盘新建的smile中, 1.根据猫狗数据集训练的方法来训练笑脸数据集 1.首先将train_folder文件夹下俩个文件夹内的图片的名字做修改。(修…

使用预先训练网络和特征抽取大力提升图像识别率

神经网络在项目实践中遇到的一大问题是数据不足。任何人工智能项目,在数据不足面前都会巧妇难为无米之炊,算法再精巧,只要数据量不足,最后的效果都不尽如人意,我们目前正在做的图像识别就是如此,要想让网络…

笑脸数据集、口罩数据集划分、训练、测试(jupyter notebook)

一、HOG,Dlib,卷积神经网络介绍 1、HoG ①方法简介 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的描述子。通过计算和统计局部区域的梯度方向直方图来构成特征。Ho…

Deep Learning with Python 系列笔记(三):计算机视觉

计算机视觉的深度学习 我们将深入探讨卷积的原理以及为什么它们在计算机视觉任务中如此成功。但首先,让我们来看看一个非常简单的“convnet”示例,我们将使用我们的convnet来对MNIST数字进行分类。 下面的6行代码展示了基本的convnet是什么样子的。它是…

基于Keras实现Kaggle2013--Dogs vs. Cats12500张猫狗图像的精准分类

【下载数据集】 下载链接–百度网盘 【整理数据集】 将训练数据集分割成训练集、验证集、测试集,目录结构如图所示: 在Pycharm中新建项目,创建split_dataset.pyimport os, shutil# 数据集解压之后的目录 original_dataset_dir = D:\kaggle\dogsvscats\\train # 存放小数据集…

使用tensorflow搭建分类神经网络以及迁移学习(训练过程)

*************************************************** 码字不易,收藏之余,别忘了给我点个赞吧! *************************************************** ---------Start 本文不涉及tensorflow环境配置过程,只讲解整个项目代码…

基于卷积神经网络的图像识别技术从入门到深爱(理论思想与代码实践齐飞)

基于卷积神经网络的图像识别技术从入门到深爱(理论与代码实践齐飞!) 零、前言一、手写数字识别入门神经网络(入门篇)1. 手写数字数据集及神经网络数据概念介绍1.1 手写数字数据集1.2 神经网络数据集1.3 基于tensorflow…

卷积神经网络实现人脸识别微笑检测

一:卷积神经网络介绍: 1. 定义: 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习&a…

【053】ImageDataGenerator() 介绍

内容目录 一、ImageDataGenerator() 介绍二、数据增强处理和类的构造函数参数1、数据增强处理(data augmentation)2、ImageDataGenerator类的构造函数参数三、一般的对图像的处理流程四、ImageDataGenerator的所有方法介绍1、fit方法2、flow方法3、flow_…

2020中国华录杯·数据湖算法大赛—定向算法赛(吸烟打电话检测)baseline-tensorflow2.3-python3.6

文章目录 1.赛事背景1.主办方2.赛事介绍 2.baseline2.1 文件夹结构2.2 demo1. 01_train_test_split.py2. 02_tf2_mobilev2_classes.py3. 03_predict.py 3.问题及改进4.修改记录 1.赛事背景 1.主办方 赛事链接训练集测试集验证集 2.赛事介绍 1. 【赛题描述】行为规范&#xf…

卷积神经网络实现表情识别

卷积神经网络实现表情识别 CNN人脸表情识别图片预处理原本效果处理后效果 图片数据集效果 CNN人脸识别创建模型归一化与数据增强创建网络 摄像头人脸识别图片识别 参考 CNN人脸表情识别 图片预处理 import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy…

Tensorflow 2.5 model.evaluate报错Invalid argument: required broadcastable shapes at loc(unknown)

Tensorflow 2.5使用model.evaluate进行模型评估时报错Invalid argument: required broadcastable shapes at loc unknown 1.软件环境⚙️2.问题描述🔍3.解决方法🐡4.结果预览🤔 ⚡插播一条老家自产的糖心苹果,多个品种&#xff0c…

推荐收藏!3.5万字图解 Pandas!

↓推荐关注↓ 大家好,在 Python 各个工具包中,最频繁使用的应该就是 Pandas 了。今天我以图解的方式给大家介绍 Pandas 中各种常用的操作,内容有点长,喜欢记得点赞、收藏、关注。 第一部分:Pandas 展示 请看下表: 它描…

ONLYOFFICE 文档 7.4 版本现已发布:新增绘图、雷达图、合并文档、另存为图片等功能

您现在可以使用我们最新版本的在线编辑器了,更新的功能包括:绘图、雷达图、合并文档、将某个对象或者整个文档/工作表保存为图片、更强大的编辑区域保护等等。继续阅读本文了解所有的更新。 在编辑器中绘图 尽情发挥创造力,使用画笔或荧光笔…