使用预先训练网络和特征抽取大力提升图像识别率

神经网络在项目实践中遇到的一大问题是数据不足。任何人工智能项目,在数据不足面前都会巧妇难为无米之炊,算法再精巧,只要数据量不足,最后的效果都不尽如人意,我们目前正在做的图像识别就是如此,要想让网络准确的识别猫狗图片,没有几万张图片以上是做不到的。

君子擅假于物,我们没有图片对模型进行训练,但如果别人有足够的图片,并且已经训练好了相应网络,我们能不能直接拿过来就用呢?答案是肯定的。有一些机构使用大量图片训练网络后,并把训练好的网络分享出来,假设别人用几万张猫狗图片训练出了网络,我们直接拿过来用于识别自己的猫狗图片,那显然效率和准确率比我们自己构造一个网络要高的多。

有很多机构,构造了自己的网络后,将ImageNet上海量的图片输入到网络中训练,最后得到了识别率很高的网络,而且他们愿意把劳动成果分享出来,由此我们可以不客气的直接借用。后面我们将使用一个大型卷积网络,它经过了大量数据的严格训练,这些图片数据来源于ImageNet,该网站包含140万张图片资源,这些图片大多涉及我们日常生活的物品以及常见动物,显然很多不同种类的猫和狗必然包含在内。

我们将使用一个训练好的神经网络叫VGG16,后面我们还会遇到一系列稀奇古怪的公开网络,例如ResNet, Inception, Xception等等,这些网络很像程序开发中的开源库,别人做好后分享给别人直接用。由于别人做出的网络肯定跟我们自己面对的应用场景有所区别,所以在使用时,我们必须对其进行相应改造,常用的方法有特征抽取和参数调优,我们分别就这两种方法进行深入讨论。

我们先看所谓的特征抽取。在我们构造卷积网络时,一开始先是好几层卷积层和Max Pooling层,然后会调用Flatten()把他们输出的多维向量压扁后,传入到普通层,下面代码就是我们前几节做过的卷积网络,它的结构正如我们刚才描述的那样:

from keras import layers
from keras import models
from keras import optimizersmodel = models.Sequential()
#输入图片大小是150*150 3表示图片像素用(R,G,B)表示
model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(150 , 150, 3)))
model.add(layers.MaxPooling2D((2,2)))model.add(layers.Conv2D(64, (3,3), activation='relu'))
model.add(layers.MaxPooling2D((2,2)))model.add(layers.Conv2D(128, (3,3), activation='relu'))
model.add(layers.MaxPooling2D((2,2)))model.add(layers.Conv2D(128, (3,3), activation='relu'))
model.add(layers.MaxPooling2D((2,2)))model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4),metrics=['acc'])model.summary()

我们现在要借用的的VGG16网络,其结构与上面差不多,只不过它的Conv2D和MaxPooling层要比我们上面做的多得多而已。在我们借用别人训练好的网络时,往往要去掉Flatten()后面的网络层,因为那些网络层与别人构造网络时的具体应用场景相关,他们的应用场景与我们肯定不同,我们要借用的是Flatten上面那些由卷积层和Max Pooling层输出的结果,这些结果蕴含着对训练图片本质的认知,这才是我们想要的,去掉Flatten后面的神经层,换上我们自己的神经层,这个行为就叫特征抽取,具体流程如下图:

屏幕快照 2018-07-23 下午4.26.25.png

VGG16网络早已包含在keras框架中,我们可以方便的直接引用,我们通过如下代码来初始化一个VGG16网络实例:

from keras.applications import VGG16conv_base = VGG16(weights = 'imagenet', include_top = False, input_shape=(150, 150, 3))conv_base.summary()

weight参数告诉程序将网络的卷积层和max pooling层对应的参数传递过来,并将它们初始化成对应的网络层次。include_top表示是否也要把Flatten()后面的网络层也下载过来,VGG16对应的这层网络用来将图片划分到1000个不同类别中,由于我们只用来区分猫狗两个类别,因此我们去掉它这一层。input_shape告诉网络,我们输入图片的大小是150*150像素,每个像素由[R, G, B]三个值表示。上面代码执行后结果如下:

屏幕快照 2018-07-23 下午4.48.49.png

从上面输出结果看出,VGG16的网络结构与我们前面做的网络差不多,只不过它的层次要比我们多不少。最后的(None, 4, 4, 512)表示它将输出4*4的矩阵,而这些矩阵有512层,或者你也可以看成它将输出一个4*4的矩阵,而矩阵每个元素是包含512个值的向量。

接下来我们将把自己的图片读进来,把图片喂给上面网络,让它把图片的隐含信息给抽取出来:

import os 
import numpy as np
from keras.preprocessing.image import ImageDataGeneratorbase_dir = '/Users/chenyi/Documents/人工智能/all/cats_and_dogs_small'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')datagen = ImageDataGenerator(rescale = 1. / 255)
batch_size = 20def extract_features(directory, sample_count):features = np.zeros(shape = (sample_count, 4, 4, 512))labels = np.zeros(shape = (sample_count))generator = datagen.flow_from_directory(directory, target_size = (150, 150), batch_size = batch_size,class_mode = 'binary')i = 0for inputs_batch, labels_batch in generator:#把图片输入VGG16卷积层,让它把图片信息抽取出来features_batch = conv_base.predict(inputs_batch)#feature_batch 是 4*4*512结构features[i * batch_size : (i + 1)*batch_size] = features_batchlabels[i * batch_size : (i+1)*batch_size] = labels_batchi += 1if i * batch_size >= sample_count :#for in 在generator上的循环是无止境的,因此我们必须主动break掉breakreturn features , labels#extract_features 返回数据格式为(samples, 4, 4, 512)
train_features, train_labels = extract_features(train_dir, 2000)
validation_features, validation_labels = extract_features(validation_dir, 1000)
test_features, test_labels = extract_features(test_dir, 1000)

上面代码利用VGG16的卷积层把图片的特征抽取出来,接下来我们就可以吧抽取的特征输入到我们自己的神经层中进行分类,代码如下:

train_features = np.reshape(train_features, (2000, 4 * 4 * 512))
validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512))
test_features = np.reshape(test_features, (1000, 4 * 4* 512))from keras import models
from keras import layers
from keras import optimizers#构造我们自己的网络层对输出数据进行分类
model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_dim = 4 * 4 * 512))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation = 'sigmoid'))model.compile(optimizer=optimizers.RMSprop(lr = 2e-5), loss = 'binary_crossentropy', metrics = ['acc'])
history = model.fit(train_features, train_labels, epochs = 30, batch_size = 20, validation_data = (validation_features, validation_labels))

由于我们不需要训练卷积层,因此上面代码运行会很快,我们把训练结果和校验结果画出来看看:

import matplotlib.pyplot as pltacc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(1, len(acc) + 1)plt.plot(epochs, acc, 'bo', label = 'Train_acc')
plt.plot(epochs, val_acc, 'b', label = 'Validation acc')
plt.title('Trainning and validation accuracy')
plt.legend()plt.figure()plt.plot(epochs, loss, 'bo', label = 'Training loss')
plt.plot(epochs, val_loss, 'b', label = 'Validation loss')
plt.title('Training and validation loss')
plt.legend()plt.show()

上面代码运行后结果如下:

屏幕快照 2018-07-23 下午6.02.32.png

从上面可以看出,经过一百多万张图片训练的网络,其识别效果就要比我们用4000张图片训练的网络要好很多,网络对图片的校验正确率达到了99%以上,同时对训练数据和校验数据的损失估计完全是一模一样的。

上面的方法叫特征提取,还有一种方法叫参数调优。特征提取时,我们把图片输入VGG16的卷积层,让他直接帮我们把图片中的特征提取出来,我们并没有通过自己的图片去训练更改VGG16的卷积层,参数调优的做法在于,我们会有限度的通过自己的数据去训练VGG16提供的卷积层,于是让其能从我们的图片中学习到相关信息。我们从VGG16模型中获取了它六层卷积层,我们在调优时,让这六层卷积层中的最高2层也去学习我们的图片,于是最高两层的链路权重参数会根据我们的图片性质而更改,基本情况如下:

屏幕快照 2018-07-24 上午8.58.14.png

上图就是我们从VGG16拿到的卷积层,我们用自己的图片去训练修改它最高的两层,其他层次不做修改,这种只影响模型一部分的方法就叫参数调优。调优必须只对VGG16的卷积层做小范围修改,因为它的模型是经过大数据,反复训练得到的,如果我们对它进行大范围修改,就会破坏它原来训练的结果,这样人家辛苦做出来的工作成果就会被我们毁于一旦。所以参数调优的步骤如下:

1,将我们自己的网络层添加到VGG16的卷积层之上。
2,固定VGG16的卷积层保持不变。
3,用数据训练我们自己添加的网络层
4,将VGG16的卷积层最高两层放开
5,用数据同时训练放开的那两层卷积层和我们自己添加的网络层

我们看看代码就明白上面步骤所要描述的意思:

model = models.Sequential()
#将VGG16的卷积层直接添加到我们的网络
model.add(conv_base)
#添加我们自己的网络层
model.add(layers.Flatten())
model.add(layers.Dense(256, activation = 'relu'))
model.add(layers.Dense(1, activation = 'sigmoid'))
model.summary()

上面代码运行后结果如下:

屏幕快照 2018-07-24 上午9.13.59.png

从上面输出结果看,VGG16的卷积层已经有一千多万个参数了!用个人电脑单个CPU是不可能对这个模型进行训练的!但我们可以训练它的其中一部分,我们把它最高三层与我们自己的网络层结合在一起训练,同时冻结最低四层。下面的代码将会把卷积层进行部分冻结:

conv_base.trainable = True
set_trainable = False
#一旦读取到'block5_conv1'时,意味着来到卷积网络的最高三层
#可以使用conv_base.summary()来查看卷积层的信息
for layer in conv_base.layers:if layer.name == 'block5_conv1':set_trainable = Trueif set_trainable:#当trainable == True 意味着该网络层可以更改,要不然该网络层会被冻结,不能修改layer.trainable = Trueelse:layer.trainable = False

然后我们把数据传入网络,训练给定的卷积层和我们自己的网络层:

#把图片数据读取进来
test_datagen = ImageDataGenerator(rescale = 1. / 255)
train_generator = test_datagen.flow_from_directory(train_dir, target_size = (150, 150), batch_size = 20,class_mode = 'binary')
validation_generator = test_datagen.flow_from_directory(validation_dir, target_size = (150,150),batch_size = 20,class_mode = 'binary')
model.compile(loss = 'binary_crossentropy', optimizer = optimizers.RMSprop(2e-5),metrics = ['acc'])history = model.fit_generator(train_generator, steps_per_epoch = 100, epochs = 30, validation_data = validation_generator,validation_steps = 50)

由于我的电脑运行上面代码时太慢,因此这里我没有把训练结果显示出来,有兴趣的读者可以自己尝试一下。

更详细的讲解和代码调试演示过程,请点击链接

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/48865.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

笑脸数据集、口罩数据集划分、训练、测试(jupyter notebook)

一、HOG,Dlib,卷积神经网络介绍 1、HoG ①方法简介 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的描述子。通过计算和统计局部区域的梯度方向直方图来构成特征。Ho…

Deep Learning with Python 系列笔记(三):计算机视觉

计算机视觉的深度学习 我们将深入探讨卷积的原理以及为什么它们在计算机视觉任务中如此成功。但首先,让我们来看看一个非常简单的“convnet”示例,我们将使用我们的convnet来对MNIST数字进行分类。 下面的6行代码展示了基本的convnet是什么样子的。它是…

基于Keras实现Kaggle2013--Dogs vs. Cats12500张猫狗图像的精准分类

【下载数据集】 下载链接–百度网盘 【整理数据集】 将训练数据集分割成训练集、验证集、测试集,目录结构如图所示: 在Pycharm中新建项目,创建split_dataset.pyimport os, shutil# 数据集解压之后的目录 original_dataset_dir = D:\kaggle\dogsvscats\\train # 存放小数据集…

使用tensorflow搭建分类神经网络以及迁移学习(训练过程)

*************************************************** 码字不易,收藏之余,别忘了给我点个赞吧! *************************************************** ---------Start 本文不涉及tensorflow环境配置过程,只讲解整个项目代码…

基于卷积神经网络的图像识别技术从入门到深爱(理论思想与代码实践齐飞)

基于卷积神经网络的图像识别技术从入门到深爱(理论与代码实践齐飞!) 零、前言一、手写数字识别入门神经网络(入门篇)1. 手写数字数据集及神经网络数据概念介绍1.1 手写数字数据集1.2 神经网络数据集1.3 基于tensorflow…

卷积神经网络实现人脸识别微笑检测

一:卷积神经网络介绍: 1. 定义: 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习&a…

【053】ImageDataGenerator() 介绍

内容目录 一、ImageDataGenerator() 介绍二、数据增强处理和类的构造函数参数1、数据增强处理(data augmentation)2、ImageDataGenerator类的构造函数参数三、一般的对图像的处理流程四、ImageDataGenerator的所有方法介绍1、fit方法2、flow方法3、flow_…

2020中国华录杯·数据湖算法大赛—定向算法赛(吸烟打电话检测)baseline-tensorflow2.3-python3.6

文章目录 1.赛事背景1.主办方2.赛事介绍 2.baseline2.1 文件夹结构2.2 demo1. 01_train_test_split.py2. 02_tf2_mobilev2_classes.py3. 03_predict.py 3.问题及改进4.修改记录 1.赛事背景 1.主办方 赛事链接训练集测试集验证集 2.赛事介绍 1. 【赛题描述】行为规范&#xf…

卷积神经网络实现表情识别

卷积神经网络实现表情识别 CNN人脸表情识别图片预处理原本效果处理后效果 图片数据集效果 CNN人脸识别创建模型归一化与数据增强创建网络 摄像头人脸识别图片识别 参考 CNN人脸表情识别 图片预处理 import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy…

Tensorflow 2.5 model.evaluate报错Invalid argument: required broadcastable shapes at loc(unknown)

Tensorflow 2.5使用model.evaluate进行模型评估时报错Invalid argument: required broadcastable shapes at loc unknown 1.软件环境⚙️2.问题描述🔍3.解决方法🐡4.结果预览🤔 ⚡插播一条老家自产的糖心苹果,多个品种&#xff0c…

推荐收藏!3.5万字图解 Pandas!

↓推荐关注↓ 大家好,在 Python 各个工具包中,最频繁使用的应该就是 Pandas 了。今天我以图解的方式给大家介绍 Pandas 中各种常用的操作,内容有点长,喜欢记得点赞、收藏、关注。 第一部分:Pandas 展示 请看下表: 它描…

ONLYOFFICE 文档 7.4 版本现已发布:新增绘图、雷达图、合并文档、另存为图片等功能

您现在可以使用我们最新版本的在线编辑器了,更新的功能包括:绘图、雷达图、合并文档、将某个对象或者整个文档/工作表保存为图片、更强大的编辑区域保护等等。继续阅读本文了解所有的更新。 在编辑器中绘图 尽情发挥创造力,使用画笔或荧光笔…

四十不惑-重头再来

四十不惑-重头再来 重装系统系统版本 卸载老毛桃自动安装的软件安装必备软件安装Docker DeskTop安装Docker Desktop后重启系统运行Power Shell切换环境重新运行PS DockerDesktop导入镜像启动DockeDesktop启动PS 新建容器搭建ChatGPT(pengzhile_pandora_latest_43f234c4e8a8)搭建…

大学生必备神器

大学生要掌握的办公软件因专业和工作需求而异,但是以下是一些普遍适用于大学生的办公软件,可以帮助提高学习和工作效率,今天就给大家推荐几款大学生常用的软件。 1.OneDrive 这是微软出品的云存储产品,与百度网盘有些类似&#…

北极九章CEO刘沂鑫:从自然语言一步直达数据洞察——数据驱动增长的新范式|量子位·视点分享回顾...

视点 发自 凹非寺量子位 | 公众号 QbitAI 今天,尽管人人都在谈论大数据,但数据实际价值和现有价值有巨大落差。 尽管企业采集和储存、计算数据的能力越来越强,但数据分析能力始终增长缓慢。据Forrester调研,约70%的企业数据从未被…

老胡的周刊(第089期)

老胡的信息周刊[1],记录这周我看到的有价值的信息,主要针对计算机领域,内容主题极大程度被我个人喜好主导。这个项目核心目的在于记录让自己有印象的信息做一个留存以及共享。 🎯 项目 MOSS[2] 来自复旦大学的开源工具增强型会话语…

从网站流量指标开始,CSDN 如何洞察运营效果异动?丨评测来了

最近,CSDN组织了一次《人人都能简单上手的指标平台》开箱测评活动,邀请了三位嘉宾,分别是 Kyligence 联合创始人兼 CTO 李扬、CSDN 战略合作总监闫辉、CSDN 开发云 CTO 冯丙见。三位嘉宾根据真实的需求场景,详细评估了指标平台的最…

跟我看 Microsoft Build 2023

又是一年一度的 Microsoft Build 了,你有和我一样熬夜看了吗?如果没有,那么你就错过了一场精彩的技术盛宴。本次的 Microsoft Build ,有非常多的干货,围绕打造 Copilot 应用展开。我会将基于 Data AI 比较重要的内容列…

ChatGPT简介|人机交互的新时代|小智ai

ChatGPT丨小智ai丨chatgpt丨人工智能丨OpenAI丨聊天机器人丨AI语音助手丨GPT-3.5丨开源AI平台 导语:随着人工智能的迅猛发展,ChatGPT(Chat Generative Pre-trained Transformer)作为一种基于深度学习的自然语言处理模型&#xff0…

从春节后央行的首批罚单,看金融反欺诈反洗钱的复杂性

目录 个人信息保护的问题 征信管理的问题 反洗钱与反欺诈的问题 金融欺诈愈加复杂多变 金融机构如何增强反欺诈反洗钱 春节后,央行公示首批罚单。其中,厦门银行被中国人民银行福州中心支行给予警告,并没收违法所得767.17元,处…