python rabbitmq实现简单/持久/广播/组播/topic/rpc消息异步发送可配置Django

windows首先安装rabbitmq 点击参考安装

1、环境介绍

Python 3.10.16
其他通过pip安装的版本(Django、pika、celery这几个必须要有最好版本一致)
amqp              5.3.1
asgiref           3.8.1
async-timeout     5.0.1
billiard          4.2.1
celery            5.4.0
click             8.1.7
click-didyoumean  0.3.1
click-plugins     1.1.1
click-repl        0.3.0
colorama          0.4.6
Django            4.2
dnspython         2.7.0
eventlet          0.38.2
greenlet          3.1.1
kombu             5.4.2
pika              1.3.2
pip               24.2
prompt_toolkit    3.0.48
python-dateutil   2.9.0.post0
redis             5.2.1
setuptools        75.1.0
six               1.17.0
sqlparse          0.5.3
typing_extensions 4.12.2
tzdata            2024.2
vine              5.1.0
wcwidth           0.2.13
wheel             0.44.0

2、创建Django 项目

django-admin startproject django_rabbitmq

3、在setting最下边写上

# settings.py    guest:guest 表示的是你安装好的rabbitmq的登录账号和密码
BROKER_URL = 'amqp://guest:guest@localhost:15672/'
CELERY_RESULT_BACKEND = 'rpc://'

4.1 简单模式

4.1.1 在和setting同级的目录下创建一个叫consumer.py的消费者文件,其内容如下:

import pikadef callback(ch, method, properties, body):print(f"[x] Received {body.decode()}")def start_consuming():# 创建与RabbitMQ的连接connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))channel = connection.channel()# 声明一个队列channel.queue_declare(queue='hello')# 指定回调函数channel.basic_consume(queue='hello', on_message_callback=callback, auto_ack=True)print('[*] Waiting for messages. To exit press CTRL+C')channel.start_consuming()if __name__ == "__main__":start_consuming()

4.1.2 在和setting同级的目录下创建一个叫producer.py的生产者文件,其内容如下:

import pikadef publish_message():# message = request.GET.get('msg')# 创建与RabbitMQ的连接connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))channel = connection.channel()# 声明一个队列channel.queue_declare(queue='hello')# 发布消息message = "Hello World!"channel.basic_publish(exchange='', routing_key='hello', body=message)print(f"[x] Sent '{message}'")# 关闭连接connection.close()if __name__ == "__main__":publish_message()

4.1.3 先运行消费者代码(consumer.py)再运行生产者代码(producer.py)

先:python consumer.py
再: python producer.py

4.1.4 运行结果如下:

在这里插入图片描述
在这里插入图片描述

4.2 消息持久化模式

4.2.1 在和setting同级的目录下创建一个叫recv_msg_safe.py的消费者文件,其内容如下:

import time
import pikadef callback(ch, method, properties, body):print(" [x] Received %r" % body)time.sleep(20)print(" [x] Done")# 下边这个就是标记消费完成了,下次在启动接受消息就不用从头开始了,即# 手动确认消息消费完成 和auto_ack=False 搭配使用ch.basic_ack(delivery_tag=method.delivery_tag)  # method.delivery_tag就是一个标识符,方便找对人def start_consuming():# 创建与RabbitMQ的连接connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))channel = connection.channel()# 声明一个队列channel.queue_declare(queue='hello2', durable=True)  # 若声明过,则换一个名字# 指定回调函数channel.basic_consume(queue='hello2',on_message_callback=callback,# auto_ack=True  # 为true则不能持久话消息,即消费者关闭后下次收不到之前未收取的消息auto_ack=False  # 为False则下次依然从头开始收取消息,直到callback函数调用完成)print('[*] Waiting for messages. To exit press CTRL+C')channel.start_consuming()if __name__ == "__main__":start_consuming()

4.2.2 在和setting同级的目录下创建一个叫send_msg_safe.py的生产者文件,其内容如下:

import pikadef publish_message():# 创建与RabbitMQ的连接connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))channel = connection.channel()# 声明一个队列  durable=True队列持久化channel.queue_declare(queue='hello2', durable=True)channel.basic_publish(exchange='',routing_key='hello2',body='Hello World!',# 消息持久话用,主要用作宕机的时候,估计是写入本地硬盘了properties=pika.BasicProperties(delivery_mode=2,  # make message persistent))# 关闭连接connection.close()if __name__ == "__main__":publish_message()

4.2.3 先运行消费者代码(recv_msg_safe.py)再运行生产者代码(send_msg_safe.py) 执行结果如下:

在这里插入图片描述

4.3 广播模式

4.3.1 在和setting同级的目录下创建一个叫fanout_receive.py的消费者文件,其内容如下:

# 广播模式
import pika# credentials = pika.PlainCredentials('guest', 'guest')
# connection = pika.BlockingConnection(pika.ConnectionParameters(
#     host='localhost', credentials=credentials))
# 在setting中如果不配置BROKER_URL和CELERY_RESULT_BACKEND的情况下请使用上边的代码
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs', exchange_type='fanout')  # 指定发送类型
# 必须能过queue来收消息
result = channel.queue_declare("", exclusive=True)  # 不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queue
channel.queue_bind(exchange='logs', queue=queue_name)  # 随机生成的Q,绑定到exchange上面。
print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r" % body)channel.basic_consume(on_message_callback=callback, queue=queue_name, auto_ack=True)
channel.start_consuming()

4.3.2 在和setting同级的目录下创建一个叫fanout_send.py的生产者文件,其内容如下:

# 通过广播发消息
import pika
import sys# credentials = pika.PlainCredentials('guest', 'guest')
# connection = pika.BlockingConnection(pika.ConnectionParameters(
#     host='localhost', credentials=credentials))
# 在setting中如果不配置BROKER_URL和CELERY_RESULT_BACKEND的情况下请使用上边的代码
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs', exchange_type='fanout') #发送消息类型为fanout,就是给所有人发消息# 如果等于空,就输出hello world!
message = ' '.join(sys.argv[1:]) or "info: Hello World!"channel.basic_publish(exchange='logs',routing_key='',  # routing_key 转发到那个队列,因为是广播所以不用写了body=message)print(" [x] Sent %r" % message)
connection.close()

4.3.3 先运行消费者代码(fanout_receive.py)再运行生产者代码(fanout_send.py) 执行结果如下:

在这里插入图片描述

4.4 组播模式

4.4.1 在和setting同级的目录下创建一个叫direct_recv.py的消费者文件,其内容如下:

import pika
import syscredentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost', credentials=credentials))channel = connection.channel() channel.exchange_declare(exchange='direct_logs', exchange_type='direct')
result = channel.queue_declare("", exclusive=True)
queue_name = result.method.queueseverities = sys.argv[1:]   # 接收那些消息(指info,还是空),没写就报错
if not severities:sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])  # 定义了三种接收消息方式info,warning,errorsys.exit(1)for severity in severities:  # [error  info  warning],循环severitieschannel.queue_bind(exchange='direct_logs',queue=queue_name,routing_key=severity)  # 循环绑定关键字
print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r:%r" % (method.routing_key, body))channel.basic_consume(on_message_callback=callback, queue=queue_name,)
channel.start_consuming()

4.4.2 在和setting同级的目录下创建一个叫direct_send.py的生产者文件,其内容如下:

# 组播
import pika
import syscredentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost', credentials=credentials))channel = connection.channel()channel.exchange_declare(exchange='direct_logs',exchange_type='direct') #指定类型severity = sys.argv[1] if len(sys.argv) > 1 else 'info'  #严重程序,级别;判定条件到底是info,还是空,后面接消息message = ' '.join(sys.argv[2:]) or 'Hello World!'  #消息channel.basic_publish(exchange='direct_logs',routing_key=severity, #绑定的是:error  指定关键字(哪些队列绑定了,这个级别,那些队列就可以收到这个消息)body=message)print(" [x] Sent %r:%r" % (severity, message))
connection.close()

4.4.3 先运行消费者代码(direct_recv.py)再运行生产者代码(direct_send.py) 执行结果如下:

在这里插入图片描述

4.5 更细致的topic模式

4.5.1 在和setting同级的目录下创建一个叫topic_recv.py的消费者文件,其内容如下:

import pika
import syscredentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost', credentials=credentials))channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',exchange_type='topic')result = channel.queue_declare("", exclusive=True)
queue_name = result.method.queuebinding_keys = sys.argv[1:]
if not binding_keys:print("sys.argv[0]", sys.argv[0])sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])sys.exit(1)for binding_key in binding_keys:channel.queue_bind(exchange='topic_logs',queue=queue_name,routing_key=binding_key)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r:%r" % (method.routing_key, body))channel.basic_consume(on_message_callback=callback,queue=queue_name)channel.start_consuming()

4.5.2 在和setting同级的目录下创建一个叫topic_send.py的生产者文件,其内容如下:

import pika
import syscredentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost', credentials=credentials))channel = connection.channel()channel.exchange_declare(exchange='topic_logs',exchange_type='topic') #指定类型routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'message = ' '.join(sys.argv[2:]) or 'Hello World!'  #消息channel.basic_publish(exchange='topic_logs',routing_key=routing_key,body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()

4.5.3 先运行消费者代码(topic_recv.py)再运行生产者代码(topic_send.py) 执行结果如下:

在这里插入图片描述

4.6 Remote procedure call (RPC) 双向模式

4.6.1 在和setting同级的目录下创建一个叫rpc_client.py的消费者文件,其内容如下:

import pika
import uuid
import time# 斐波那契数列 前两个数相加依次排列
class FibonacciRpcClient(object):def __init__(self):# 赋值变量,一个循环值self.response = None# 链接远程# self.connection = pika.BlockingConnection(pika.ConnectionParameters(#         host='localhost'))credentials = pika.PlainCredentials('guest', 'guest')self.connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost', credentials=credentials))self.channel = self.connection.channel()# 生成随机queueresult = self.channel.queue_declare("", exclusive=True)# 随机取queue名字,发给消费端self.callback_queue = result.method.queue# self.on_response 回调函数:只要收到消息就调用这个函数。# 声明收到消息后就 收queue=self.callback_queue内的消息  准备接受命令结果self.channel.basic_consume(queue=self.callback_queue,auto_ack=True, on_message_callback=self.on_response)# 收到消息就调用# ch 管道内存对象地址# method 消息发给哪个queue# body数据对象def on_response(self, ch, method, props, body):# 判断本机生成的ID 与 生产端发过来的ID是否相等if self.corr_id == props.correlation_id:# 将body值 赋值给self.responseself.response = bodydef call(self, n):# 随机一次唯一的字符串self.corr_id = str(uuid.uuid4())# routing_key='rpc_queue' 发一个消息到rpc_queue内self.channel.basic_publish(exchange='',routing_key='rpc_queue',properties=pika.BasicProperties(# 执行命令之后结果返回给self.callaback_queue这个队列中reply_to=self.callback_queue,# 生成UUID 发送给消费端correlation_id=self.corr_id,),# 发的消息,必须传入字符串,不能传数字body=str(n))# 没有数据就循环收while self.response is None:# 非阻塞版的start_consuming()# 没有消息不阻塞  检查队列里有没有新消息,但不会阻塞self.connection.process_data_events()print("no msg...")time.sleep(0.5)return int(self.response)# 实例化
fibonacci_rpc = FibonacciRpcClient()response = fibonacci_rpc.call(5)
print(" [.] Got %r" % response)

4.6.2 在和setting同级的目录下创建一个叫rpc_server.py的生产者文件,其内容如下:

#_*_coding:utf-8_*_
import pika
import time
# 链接socket
credentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost', credentials=credentials))channel = connection.channel()# 生成rpc queue  在这里声明的所以先启动这个
channel.queue_declare(queue='rpc_queue')# 斐波那契数列
def fib(n):if n == 0:return 0elif n == 1:return 1else:return fib(n-1) + fib(n-2)# 收到消息就调用
# ch 管道内存对象地址
# method 消息发给哪个queue
# props 返回给消费的返回参数
# body数据对象
def on_request(ch, method, props, body):n = int(body)print(" [.] fib(%s)" % n)# 调用斐波那契函数 传入结果response = fib(n)ch.basic_publish(exchange='',# 生产端随机生成的queuerouting_key=props.reply_to,# 获取UUID唯一 字符串数值properties=pika.BasicProperties(correlation_id=props.correlation_id),# 消息返回给生产端body=str(response))# 确保任务完成# ch.basic_ack(delivery_tag = method.delivery_tag)# 每次只处理一个任务
# channel.basic_qos(prefetch_count=1)
# rpc_queue收到消息:调用on_request回调函数
# queue='rpc_queue'从rpc内收
channel.basic_consume(queue="rpc_queue",auto_ack=True,on_message_callback=on_request)
print(" [x] Awaiting RPC requests")
channel.start_consuming()

4.6.3 先运行消费者代码(rpc_server.py)再运行生产者代码(rpc_client.py) 执行结果如下:

在这里插入图片描述

参考实现1

参考实现2

参考实现3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/493639.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用CNN模型训练图片识别(键盘,椅子,眼镜,水杯,鼠标)

首先是环境: 我是在Anaconda3中的Jupyter Notebook (tensorflow)中进行训练,环境各位自行安装 数据集: 本次数据集五个类型(键盘,椅子,眼镜,水杯,鼠标)我收集了每个接近两…

【IoTDB 线上小课 10】为什么选择 IoTDB 管理时序数据?

【IoTDB 视频小课】年底更新!恭喜累计到第十期啦~ 关于 IoTDB,关于物联网,关于时序数据库,关于开源... 一个问题重点,3-5 分钟,我们讲给你听: 为什么选 IoTDB? 观看过之前视频的朋友…

每日十题八股-2024年12月21日

1.MyBatis运用了哪些常见的设计模式? 2.了解SpringCloud吗,说一下他和SpringBoot的区别 3.用过哪些微服务组件? 4.负载均衡有哪些算法? 5.如何实现一直均衡给一个用户? 6.介绍一下服务熔断 7.介绍一下服务降级 8.NOSQL…

LabVIEW深海气密采水器测控系统

LabVIEW的深海气密采水器测控系统通过高性价比的硬件选择与自主开发的软件,实现了高精度的温度、盐度和深度测量,并在实际海上试验中得到了有效验证。 项目背景 深海气密采水器是进行海底科学研究的关键工具,用LabVIEW开发了一套测控系统&am…

RK3588 , mpp硬编码yuv, 保存MP4视频文件.

RK3588 , mpp硬编码yuv, 保存MP4视频文件. ⚡️ 传送 ➡️ Ubuntu x64 架构, 交叉编译aarch64 FFmpeg mppRK3588, FFmpeg 拉流 RTSP, mpp 硬解码转RGBRk3588 FFmpeg 拉流 RTSP, 硬解码转RGBRK3588 , mpp硬编码yuv, 保存MP4视频文件.

EMMC , UFS, SSD介绍

EMMC(Embedded Multi Media Card,嵌入式多媒体卡)、UFS(Universal Flash Storage,通用闪存存储)和SSD(Solid State Drive,固态硬盘)都是数据存储技术,是现代设…

arm Rk3588 更新固件

firefly的rk3588板子。 一、安装驱动、工具以及烧录工具 二、adb shell 在adb目录输入cmd 然后输入 adb shell 截图: 三、加载固件 四、 进loader 通过上图烧录工具的界面展示,其提示“发现一个ADB设备”。输入: reboot loader 进入lo…

Java性能测试Benchmark使用总结

如何测量Java代码的性能 在 Java 中&#xff0c;可以使用多种方法来测量一段代码的执行性能。使用 System.currentTimeMillis()是最常见的方法 long startTime System.currentTimeMillis();// 需要测量的代码块 for (int i 0; i < 1000000; i) {// 示例代码 }long endTi…

Win10将WindowsTerminal设置默认终端并添加到右键(无法使用微软商店)

由于公司内网限制&#xff0c;无法通过微软商店安装 Windows Terminal&#xff0c;本指南提供手动安装和配置新版 Windows Terminal 的步骤&#xff0c;并添加右键菜单快捷方式。 1. 下载新版终端安装包: 访问 Windows Terminal 的 GitHub 发布页面&#xff1a;https://githu…

Linux网络基础--传输层Tcp协议(上) (详细版)

目录 Tcp协议报头&#xff1a; 4位首部长度&#xff1a; 源端口号和目的端口号 32位序号和确认序号 标记位 超时重传机制&#xff1a; 两个问题 连接管理机制 三次握手&#xff0c;四次挥手 建立连接&#xff0c;为什么要有三次握手&#xff1f; 先科普一个概念&…

【NLP 18、新词发现和TF·IDF】

目录 一、新词发现 1.新词发现的衡量标准 ① 内部稳固 ② 外部多变 2.示例 ① 初始化类 NewWordDetect ② 加载语料信息&#xff0c;并进行统计 ③ 统计指定长度的词频及其左右邻居字符词频 ④ 计算熵 ⑤ 计算左右熵 ​编辑 ⑥ 统计词长总数 ⑦ 计算互信息 ⑧ 计算每个词…

clickhouse-数据库引擎

1、数据库引擎和表引擎 数据库引擎默认是Ordinary&#xff0c;在这种数据库下面的表可以是任意类型引擎。 生产环境中常用的表引擎是MergeTree系列&#xff0c;也是官方主推的引擎。 MergeTree是基础引擎&#xff0c;有主键索引、数据分区、数据副本、数据采样、删除和修改等功…

Pytorch | 从零构建Vgg对CIFAR10进行分类

Pytorch | 从零构建Vgg对CIFAR10进行分类 CIFAR10数据集Vgg网络结构特点性能应用影响 Vgg结构代码详解结构代码代码详解特征提取层 _make_layers前向传播 forward 训练过程和测试结果代码汇总vgg.pytrain.pytest.py 前面文章我们构建了AlexNet对CIFAR10进行分类&#xff1a; Py…

大数据机器学习算法和计算机视觉应用07:机器学习

Machine Learning Goal of Machine LearningLinear ClassificationSolutionNumerical output example: linear regressionStochastic Gradient DescentMatrix Acceleration Goal of Machine Learning 机器学习的目标 假设现在有一组数据 x i , y i {x_i,y_i} xi​,yi​&…

DB-GPT V0.6.3 版本更新:支持 SiliconCloud 模型、新增知识处理工作流等

DB-GPT V0.6.3版本现已上线&#xff0c;快速预览新特性: 新特性 1. 支持 SiliconCloud 模型&#xff0c;让用户体验多模型的管理能力 如何使用&#xff1a; 修改环境变量文件.env&#xff0c;配置SiliconCloud模型 # 使用 SiliconCloud 的代理模型 LLM_MODELsiliconflow_p…

ChromeOS 131 版本更新

ChromeOS 131 版本更新 1. ChromeOS Flex 自动注册 在 ChromeOS 131 中&#xff0c;ChromeOS Flex 的自动注册功能现已允许大规模部署 ChromeOS Flex 设备。与 ChromeOS 零接触注册类似&#xff0c;自动注册将通过组织管理员创建的注册令牌嵌入到 ChromeOS Flex 镜像中。这将…

你好Python

初识Python Python的起源 1989年&#xff0c;为了打发圣诞节假期&#xff0c;Gudio van Rossum吉多 范罗苏姆&#xff08;龟叔&#xff09;决心开发一个新的解释程序&#xff08;Python雏形&#xff09; 1991年&#xff0c;第一个Python解释器诞生 Python这个名字&#xff…

【Linux系统编程】:信号(2)——信号的产生

1.前言 我们会讲解五种信号产生的方式: 通过终端按键产生信号&#xff0c;比如键盘上的CtrlC。kill命令。本质上是调用kill()调用函数接口产生信号硬件异常产生信号软件条件产生信号 前两种在前一篇文章中做了介绍&#xff0c;本文介绍下面三种. 2. 调用函数产生信号 2.1 k…

BlueLM:以2.6万亿token铸就7B参数超大规模语言模型

一、介绍 BlueLM 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型&#xff0c;本次发布包含 7B 基础 (base) 模型和 7B 对话 (chat) 模型&#xff0c;同时我们开源了支持 32K 的长文本基础 (base) 模型和对话 (chat) 模型。 更大量的优质数据 &#xff1a;高质量语料…

apache-tomcat-6.0.44.exe Win10

apache-tomcat-6.0.44.exe Win10