一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类

机器学习实战通常是将理论与实践结合,通过实际的项目或案例,帮助你理解并应用各种机器学习算法。下面是一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类。我们将通过该数据集来演示数据预处理、模型训练、评估和预测的全过程。

 访问更多内容来源 https://ai.tmqcjr.com

1. 安装所需库

首先,确保你已安装了scikit-learnmatplotlib等库,如果没有,请通过以下命令安装:

 

bash

复制代码

pip install scikit-learn matplotlib

2. 机器学习实战例程

导入必要的库
 

python

复制代码

import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

加载数据集

我们使用Scikit-Learn自带的鸢尾花数据集,这是一个经典的机器学习数据集。

 

python

复制代码

# 加载鸢尾花数据集 iris = load_iris() X = iris.data # 特征数据(花瓣和萼片的长度和宽度) y = iris.target # 标签数据(花的种类)

数据探索

在开始训练模型之前,我们可以对数据进行简单的探索,比如查看数据的维度和前几行。

 

python

复制代码

# 查看数据集的结构 print(f"数据集的特征名称: {iris.feature_names}") print(f"数据集的标签名称: {iris.target_names}") print(f"数据集的特征形状: {X.shape}") print(f"数据集的标签形状: {y.shape}") # 查看前5行数据 print(f"特征数据:\n{X[:5]}") print(f"标签数据:\n{y[:5]}")

数据划分

我们将数据集划分为训练集和测试集,通常使用70%训练,30%测试的比例。

 

python

复制代码

# 划分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) print(f"训练集的样本数量: {X_train.shape[0]}") print(f"测试集的样本数量: {X_test.shape[0]}")

数据预处理

在使用机器学习模型之前,通常需要对数据进行标准化处理,以便提高模型的性能。

 

python

复制代码

# 数据标准化:将特征缩放至均值为0,方差为1的标准正态分布 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)

训练模型

我们将训练多个机器学习模型进行比较。这里使用常见的几种分类模型:K近邻(KNN)、支持向量机(SVM)、决策树和随机森林。

1. K近邻(KNN)
 

python

复制代码

# 初始化KNN模型并训练 knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) # 在测试集上评估模型 y_pred_knn = knn.predict(X_test) print("KNN分类报告:") print(classification_report(y_test, y_pred_knn)) print(f"KNN的准确率: {accuracy_score(y_test, y_pred_knn)}")

2. 支持向量机(SVM)
 

python

复制代码

# 初始化SVM模型并训练 svm = SVC(kernel='linear') svm.fit(X_train, y_train) # 在测试集上评估模型 y_pred_svm = svm.predict(X_test) print("SVM分类报告:") print(classification_report(y_test, y_pred_svm)) print(f"SVM的准确率: {accuracy_score(y_test, y_pred_svm)}")

3. 决策树(Decision Tree)
 

python

复制代码

# 初始化决策树模型并训练 dt = DecisionTreeClassifier(random_state=42) dt.fit(X_train, y_train) # 在测试集上评估模型 y_pred_dt = dt.predict(X_test) print("决策树分类报告:") print(classification_report(y_test, y_pred_dt)) print(f"决策树的准确率: {accuracy_score(y_test, y_pred_dt)}")

4. 随机森林(Random Forest)
 

python

复制代码

# 初始化随机森林模型并训练 rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train) # 在测试集上评估模型 y_pred_rf = rf.predict(X_test) print("随机森林分类报告:") print(classification_report(y_test, y_pred_rf)) print(f"随机森林的准确率: {accuracy_score(y_test, y_pred_rf)}")

评估模型

使用classification_report来评估模型的性能,显示精确度(Precision)、召回率(Recall)和F1-score。accuracy_score则显示整体的分类准确率。

 

python

复制代码

# 显示每个模型的准确率 models = ['KNN', 'SVM', '决策树', '随机森林'] accuracies = [ accuracy_score(y_test, y_pred_knn), accuracy_score(y_test, y_pred_svm), accuracy_score(y_test, y_pred_dt), accuracy_score(y_test, y_pred_rf) ] for model, accuracy in zip(models, accuracies): print(f"{model}的准确率: {accuracy}")

混淆矩阵

为了进一步分析模型的分类效果,可以绘制混淆矩阵。

 

python

复制代码

# 绘制混淆矩阵 def plot_confusion_matrix(cm, classes): plt.figure(figsize=(6, 6)) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) plt.xlabel('Predicted label') plt.ylabel('True label') plt.tight_layout() # KNN模型的混淆矩阵 cm_knn = confusion_matrix(y_test, y_pred_knn) plot_confusion_matrix(cm_knn, iris.target_names) # 显示图形 plt.show()

预测新数据

最后,我们可以使用训练好的模型对新的数据进行预测。

 

python

复制代码

# 使用KNN模型对新样本进行预测 new_data = np.array([[5.1, 3.5, 1.4, 0.2]]) # 一个新的样本(鸢尾花特征) new_data = scaler.transform(new_data) # 标准化 prediction = knn.predict(new_data) print(f"预测的花种类: {iris.target_names[prediction]}")

3. 模型总结

通过上述步骤,我们完成了以下内容:

  1. 数据加载与预处理:加载鸢尾花数据集并进行标准化处理。
  2. 模型训练与评估:训练了4个常见的机器学习模型(KNN、SVM、决策树和随机森林),并通过classification_reportaccuracy_score评估了各个模型的性能。
  3. 模型预测:使用训练好的模型对新数据进行了预测。

4. 总结

  • KNN:适合用于小型数据集,计算复杂度较高。
  • SVM:对于中小型数据集效果不错,但训练时间较长。
  • 决策树:易于理解和解释,但容易过拟合。
  • 随机森林:通过集成多棵决策树,通常表现良好,减少了过拟合的风险。

在实际的机器学习项目中,你可以根据任务的特点选择合适的模型,并不断调整参数以优化模型的表现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/496615.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浅谈下雪花算法的原理,及在项目中使用需要注意哪些事项

目录 背景 雪花算法原理 算法特点 注意事项 总结 背景 雪花算法是一种分布式ID生成算法,由Twitter提出,用于在分布式系统中生成全局唯一的ID。该算法通过将64位的长整型数字分为符号位、时间戳、工作机器ID和序列号四个部分,确保了ID的…

Kubernetes 安装 Nginx以及配置自动补全

部署 Nginx : [rootk8s-master ~]# kubectl create deployment nginx --imagenginx:1.14-alpine deployment.apps/nginx created暴露端口: [rootk8s-master ~]# kubectl expose deployment nginx --port80 --typeNodePort service/nginx exposed查看服…

C#使用Tesseract C++ API过程记录

Tesseract Tesseract 是一个开源的光学字符识别(OCR)引擎,最初由 Hewlett-Packard(惠普)实验室开发,后来由 Google 收购并继续维护和开源贡献。Tesseract 可以识别多种语言的文字,广泛应用于将…

在交叉编译中,常见的ELF(elf)到底是什么意思?

ELF 是 Executable and Linkable Format 的缩写,中文翻译为“可执行与可链接格式”。它是一种通用的文件格式,主要用于存储可执行文件、目标文件(编译后的中间文件)、动态库(.so 文件)以及内存转储文件&…

使 el-input 内部的内容紧贴左边

<el-inputv-model"form.invitor"placeholder"PC端的自动取当前账号的手机号"readonlyclass"no-border-input" />::v-deep(.no-border-input .el-input__inner) { border: none; box-shadow: none; padding-left: 0; /* 确保内容紧贴左边 *…

国标GB28181-2022平台EasyGBS:安防监控中P2P的穿透方法

在安防监控领域&#xff0c;P2P技术因其去中心化的特性而受到关注&#xff0c;尤其是在远程视频监控和数据传输方面。P2P技术允许设备之间直接通信&#xff0c;无需通过中央服务器&#xff0c;这在提高效率和降低成本方面具有明显优势。然而&#xff0c;P2P技术在实际应用中也面…

前端开发 -- 自动回复机器人【附完整源码】

一&#xff1a;效果展示 本项目实现了一个简单的网页聊天界面&#xff0c;用户可以在输入框中输入消息&#xff0c;并点击发送按钮或按下回车键来发送消息。机器人会根据用户发送的消息内容&#xff0c;通过关键字匹配来生成自动回复。 二&#xff1a;源代码分享 <!DOCTYP…

【速成51单片机】1.已经学过stm32如何快速入门51单片机——软件下载与安装

引言 本系列专题用于已经熟悉stm32单片机的情况下&#xff0c;快速掌握51单片机。背景是我其实大一大二已经进入学校实验室了&#xff0c;已经学习了stm32单片机&#xff0c;但是现在大三期末考51单片机&#xff0c;实际期末复习更应该看老师给的重点和背书上知识点。但我不想…

node-js Express防盗链

什么是防盗连 一个简单的说明&#xff0c;假如在前端img标签想要引用图片网站上的图片&#xff0c;当你将图片地址放到img标签上想要显示的时候你发现&#xff0c;图片显示不了&#xff0c;这说明网站采用了防盗链。 怎么实现的呢 在请求头中一般会有 Referer&#xff0c;它…

68jQuery【jQuery操作DOM、事件】

jQuery jQuery操作DOM 元素节点的增删改查 创建元素节点 使用$(html)函数动态创建节点元素 函数$(html)只完成DOM元素创建&#xff0c;加入到页面还需要通过元素节点的插入或追加操作&#xff1b;同时&#xff0c;在创建DOM元素时&#xff0c;要注意字符标记是否完全闭合&am…

lin.security提权靶场渗透

声明&#xff01; 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&a…

基于aspose.words组件的word bytes转pdf bytes,去除水印和解决linux中文乱码问题

详情见 https://preferdoor.top/archives/ji-yu-aspose.wordszu-jian-de-word-byteszhuan-pdf-bytes

[python学习笔记]对象、引用、浅复制、深复制

学了这么多年编程&#xff0c;发现在学校都是浑水摸鱼&#xff0c;从来没有精通过一门语言&#xff0c;一个月熟悉python和算法。不积硅步&#xff0c;无以至千里。 本文笔记来自以下博客&#xff0c;请参考原文。 Python&#xff1a;深拷贝与浅拷贝 - 七落安歌 - 博客园 h…

arm架构 uos操作系统离线安装k8s

目录 操作系统信息 安装文件准备 主机准备 主机配置 配置hosts&#xff08;所有节点&#xff09; 关闭防火墙、selinux、swap、dnsmasq(所有节点) 系统参数设置(所有节点) 配置ipvs功能(所有节点) 安装docker&#xff08;所有节点&#xff09; 卸载老版本 安装docke…

Animated Drawings:让纸上的角色动起来

前言 今天介绍的这个工具非常的有意思&#xff1a;它可以让我们在纸上绘画的角色动起来。先一起来看看效果&#xff1a; 准备 首先&#xff0c;我们先准备一张绘画。可以在纸上进行绘制&#xff0c;也可以在电子设备上进行绘制。绘制内容不限&#xff0c;在这里为了方便演示&am…

【WRF模拟】如何得到更佳的WRF模拟效果?

【WRF模拟】如何得到更佳的WRF模拟效果&#xff1f; 模型配置&#xff08;The Model Configuration&#xff09;1.1 模拟区域domain设置1.2 分辨率Resolution (horizontal and vertical)案例&#xff1a;The Derecho of 29-30 June 2012 1.3 初始化和spin-up预热过程案例1-有无…

javaweb 04 springmvc

0.1 在上一次的课程中&#xff0c;我们开发了springbootweb的入门程序。 基于SpringBoot的方式开发一个web应用&#xff0c;浏览器发起请求 /hello 后 &#xff0c;给浏览器返回字符串 “Hello World ~”。 其实呢&#xff0c;是我们在浏览器发起请求&#xff0c;请求了我们…

openGauss与GaussDB系统架构对比

openGauss与GaussDB系统架构对比 系统架构对比openGauss架构GaussDB架构 GaussDB集群管理组件 系统架构对比 openGauss架构 openGauss是集中式数据库系统&#xff0c;业务数据存储在单个物理节点上&#xff0c;数据访问任务被推送到服务节点执行&#xff0c;通过服务器的高并…

JS 设置按钮的loading效果

本文是在其他博主的博客JS学习笔记 | 遮罩层Loading实现_jsp loading-CSDN博客基础上&#xff0c;进行实践的。 目录 一、需求 二、Jspcss实现代码 一、需求 在springboot项目中的原始html5页面中&#xff0c;原本的功能是页面加载时&#xff0c;使用ajax向后端发送请求&…

QT线程 QtConcurrent (深入理解)

QT多线程专栏共有16篇文章,从初识线程到、QMutex锁、QSemaphore信号量、Emit、Sgnals、Slot主线程子线程互相传值同步变量、QWaitCondition、事件循环、QObjects、线程安全、线程同步、线程异步、QThreadPool线程池、ObjectThread多线程操作、 moveToThread等线程操作进行了全…