导语:天越来越冷啦~
前段时间又刮起了入冬四件套(烤红薯、热奶茶、糖炒栗子、糖霜山楂)的热风~
小编也紧跟着潮流下班兴冲冲的跑去买~(附近店面的排队的人实在是太多了~风还大😷😷)
一到手就立马入口!!🥳🥳嗯~~甜到心坎里去啦~~还暖呼呼滴!!但是吃了几口之后~
齁甜🤮🤮算了算了,我还是认清自己的湖南胃吧~
🥘🥘又马不停蹄找了家火锅店~
果然~🥘🥘冬天吃火锅才是YYDS!!所以这期小编就打算给大家分享一下用python找到好吃受欢迎的火锅店~~
正文:
先给大家分享一个数据可视化案例:如何获取全国不同城市火锅店数量情况,并将这些数据进行可视化展示,以更加直观的方式去浏览全国不同省份、不同城市的火锅店分布情况。(本文数据来自于某度地图,通过python技术知识去获取数据并进行可视化。)
1)网页分析
首先先看一下数据源,在某度地图里面按照下方操作,就可以请求到全国的火锅店情况(从下图来看没有显示出来,但是通过浏览器工具的Network功能,可以看到数据。具体操作可参考:爬虫必备工具,掌握它就解决了一半的问题)
再network中,找到下面这个数据包
打开之后可以看到json数据
2)获取数据
对网页分析好之后,接下来可以借助Python技术进行获取数据,并保存到excel中。
导入相关库
import json
import requests
import openpyxl
请求数据
下面开始编写请求数据代码(请求时记得带上headers)
###请求头
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",'Referer':'https://map.baidu.com/@12949550.923158279,3712445.9716704674,6.28z',"Cookie":";"你的cookie",
}
##请求链接
url = "https://map.baidu.com/?newmap=1&reqflag=pcmap&biz=1&from=webmap&da_par=direct&pcevaname=pc4.1&qt=s&da_src=searchBox.button&wd=%E7%81%AB%E9%94%85%E5%BA%97&c=1&src=0&wd2=&pn=0&sug=0&l=6&b=(10637065.476146251,2368134.592189369;12772445.910805061,5056757.351151566)&from=webmap&biz_forward={%22scaler%22:1,%22styles%22:%22pl%22}&sug_forward=&auth=NTSwAZUMzIaTTdWD4WAv0731cWF3MQEauxLxREHzERRtykiOxAXXw1GgvPUDZYOYIZuVt1cv3uVtGccZcuVtPWv3GuztQZ3wWvUvhgMZSguxzBEHLNRTVtcEWe1GD8zv7ucvY1SGpuxVthgW1aDeuxtf0wd0vyMySFIAFM7ueh33uTtAffbDF&seckey=c6d9c7e05d7e627c56ed46fab5d7c5c792064779599d5e12b955a6f18a1204375d1588206c94d22e4bdd1ade0ad06e78c21917e24c6223b96bc51b75ca38651a1b203a0609f126163c5e82fd0549a068e537303424837ab798acfc9088e5d76a66451c20ebd9599b41c9b4f1371850d20fa442ad464712f54c912422f4fa20b3052f8bb810f30d41c7c0e55af68f9d9d973537f03d0aa0a1d1617d78cae29b49c64c2d2dc3f44cf0f8799234b124a7a2dec18bfa011e097e31a508eae37b8603f97df8f935f04b3652f190eac52d04816f302a582c53971e515ff2e0e2b4cc30446e0bee48d51c4be8b6fe4185589ed9&device_ratio=1&tn=B_NORMAL_MAP&nn=0&u_loc=12677548,2604239&ie=utf-8&t=1618452491622"
###响应数据
这里的cookie可以在浏览器network中复制即可。
通过返回的json数据可知道,我们的目标数据在more_city中,里面是列表数据是省份(provice是省份名称,num是火锅店数量),紧接着每一个省份里都有city(列表),里面是对应着省份的城市(name是城市名称,num是对应城市火锅店数量)
response = response['more_city']
for i in response:city = i['city']print(i['province'])print(i['num'])for j in city:print(j['name'])print(j['num'])
保存到excel
省份和城市分别保存到两个不同的excel中
outwb_p = openpyxl.Workbook()
outws_p = outwb_p.create_sheet(index=0)
outws_p.cell(row=1, column=1, value="省份")
outws_p.cell(row=1, column=2, value="数量")outwb_c = openpyxl.Workbook()
outws_c = outwb_c.create_sheet(index=0)
outws_c.cell(row=1, column=1, value="城市")
outws_c.cell(row=1, column=2, value="数量")##################
###在循环中写入数据
##################### 保存全国省份火锅数量-李运辰”
outwb_p.save("全国省份火锅数量-李运辰.xls") # 保存
### 保存全国城市火锅数量-李运辰”
outwb_c.save("全国城市火锅数量-李运辰.xls") # 保存
3)数据可视化
1.全国火锅店数量分布
datafile = u'全国省份火锅数量-李运辰.xls'
data = pd.read_excel(datafile)
attr = data['省份'].tolist()
value = data['数量'].tolist()
name = []
for i in attr:if "省" in i:name.append(i.replace("省",""))else:name.append(i)
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker
c = (Map().add("数量", [list(z) for z in zip(name, value)], "china").set_global_opts(title_opts=opts.TitleOpts(title="全国火锅店数量分布情况")).render("全国火锅店数量分布情况.html")
还可以这样画
atafile = u'全国省份火锅数量-李运辰.xls'
df = pd.read_excel(datafile)
province_distribution = df[['省份', '数量']].values.tolist()
geo = Geo()
geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
geo.add_schema(maptype="china")
geo.set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=110000))
# 加入数据
geo.add('全国火锅店数量分布情况图2', province_distribution, type_=ChartType.EFFECT_SCATTER)
geo.render("全国火锅店数量分布情况图2.html")
2.四川火锅店数量分布
为了绘制城市的分布图,选择了四川省为例进行绘制(如果要绘制全国的所有城市,那样出来的图密密麻麻,不美观)
datafile = u'全国城市火锅数量-李运辰.xls'
data = pd.read_excel(datafile)
city = data['城市'].tolist()
values2 = data['数量'].tolist()###四川
name = []
value = []
flag = 0
for i in range(0,len(city)):if city[i] =="绵阳市":flag = 1if flag:name.append(city[i])value.append(int(values2[i]))if city[i] =="甘孜藏族自治州":name.append(city[i])value.append(int(values2[i]))break
c = (Map().add("四川火锅店数量分布", [list(z) for z in zip(name, value)], "四川").set_global_opts(title_opts=opts.TitleOpts(title="四川火锅店数量分布"), visualmap_opts=opts.VisualMapOpts()).render("四川火锅店数量分布.html")
)
end :分享就到这啦~
记得给小编三连~家人们的支持是更新最大的动力💖💖
免费的完整项目源码领取处:私信小编09获取或者点击这行蓝色字体也可免费拿