【linux基础I/O(1)】文件描述符的本质重定向的本质

目录

  • 前言
  • 1. 理解C语言的文件接口
  • 2. 操作文件的系统调用接口
    • 2.1 open函数详解
    • 2.2 close函数详解
    • 2.3 write函数详解
    • 2.4 read函数详解
  • 3. 文件描述符fd详解
  • 4. 文件描述符的内核本质
  • 5. 怎样理解Linux下一切皆文件?
  • 6. 理解输出输入重定向
  • 7. 重定向的系统调用
  • 8. 总结

前言

“在Linux系统下,一切皆文件”,相信你也听过这句话,,那么怎样理解这句话呢?学会这篇文字,你就能理解了。

本章重点:

本篇文章着重讲解I/O的四个系统调用接口, 以及文件描述符fd的认识与fd的本质, 最后讲解应该怎样理解Linux下一切皆文件这一说法.在此之前,会先复习一下C语言的文件相关的库函数。

1. 理解C语言的文件接口

首先C\C++程序会默认打开stdin,stdout和stderr三个标准文件方便程序员直接进行读写.

但是显然有点不对劲, 我们平时使用printf和scanf时是从显示器中显示和从键盘输入, 是不是代表显示器和键盘在OS内部其实也可以看作文件?是的,向显示器打印和向磁盘写入无本质区别!

C语言打开文件的方式: fopen
C语言的读取: fread, fscanf, fgets
C语言的写入: fwrite, fprintf, fputs

fopen的返回值和三个标准文件类型都是FILE*

2. 操作文件的系统调用接口

每个语言都有一套自己的文件操作函数,但不管上层语言怎样变化,它都是封装了系统调用,所以文件的系统调用很重要!

一共四个函数:
1.open: 打开文件
2.close: 关闭文件
3.write: 向文件写入
4.read: 从文件中读取

2.1 open函数详解

在这里插入图片描述
open函数的解释如下:
在这里插入图片描述

这个flag比较特殊,虽然它是整型,但是内部却当作了位图在使用,即传递过来的选项会被当作位图中的不同位,通过判断某位是否为1来查看是否有这个选项.

open的选项(实际上是宏定义的整数)
在这里插入图片描述
open的用法: 多个选项用或|分割

int fd = open("/home/cc/test.txt",O_WRONLY | O_CREAT);

2.2 close函数详解

在这里插入图片描述
close函数很简单,意思就是关闭文件描述符fd对应的文件, 调用成功返回0.

2.3 write函数详解

在这里插入图片描述
write是向文件描述符fd对应的文件中写入数据, 数据的来源是buf, 要写入的字节数是count, 调用成功返回写入到文件中的字节数.

write的一般用法:

char* buffer = "abcdef";
int fd = open("/home/cc/text.txt",O_WRONLY);
write(fd,buffer,sizeof(buffer));

2.4 read函数详解

在这里插入图片描述
read是从文件描述符fd对应的文件中读取数据, 将数据读取到buf中,要读取的长度是count, 调用成功返回读取到的字节数.

read的一般用法:

char buffer[1024];
int fd = open("/home/cc/text.txt",O_WRONLY);
ssize_t n = read(fd,buffer,sizeof(buffer));
if(n > 0)buffer[n] = '\0';//将字符串变成C语言风格,以\0结尾

3. 文件描述符fd详解

我们知道文件描述符是一个整数,那么它是否有什么规律呢?请看下面的代码:

int fd1 = open("/home/kwy/text1.txt",O_WRONLY | O_CREAT);
int fd2 = open("/home/kwy/text2.txt",O_WRONLY | O_CREAT);
int fd3 = open("/home/kwy/text3.txt",O_WRONLY | O_CREAT);
int fd4 = open("/home/kwy/text4.txt",O_WRONLY | O_CREAT);
printf("%d, %d, %d, %d",fd1,fd2,fd3,fd4);

会发现fa1,2,3,4的整数值分别是:
3,4,5,6,这是为什么?需要回答两个问题:

1. 0号1号和2号描述符去哪儿了?
2. 文件描述符的增长规律是什么?

首先, 在最开始说过C/C++程序会默认打开stdin, stdout, stderr三个标准文件,所以其实0,1,2号文件描述符就是这三个标准文件.

其次, 0,1,2被使用后, 后面的文件描述符会从3开始, 依次+1, 一共创建到6号描述符,若此时将3号文件描述符关闭,下次打开文件对应的描述符就是3,而不是7!

可以使用下面的代码来验证第一个猜想:

//向屏幕打印信息
const char* str = "abcdef";
write(1, str, strlen(str));
//从屏幕读取信息
char buffer[1024];
int n = read(0, buffer, sizeof(buffer));
if(n > 0)buffer[n] = '\0';

4. 文件描述符的内核本质

进程想要访问某个文件的前提是打开文件,在操作系统内可能会有很多个打开的文件,OS为了维护这些资源,需要对它进行管理,会为每个打开的文件创建struct file结构体, 再用链表将这些结构体连接起来.
在这里插入图片描述

这是文件在OS内部的管理体系,而每个进程都要知道自己打开了哪些文件, 所以进程PCB中会保存一张文件描述符表(本质是结构体指针),这个表中存放了这个进程打开的所有文件!
在这里插入图片描述

从这个图中可以看见, 文件描述符的本质其实就是数组的下标,每次打开文件会去数组中扫描,找到最近的没有被使用的下标!

5. 怎样理解Linux下一切皆文件?

首先,底层不同的硬件如磁盘,显卡,键盘等一定对应了不同的操作方法,但这些设备的核心功能就是读写,也就是I/O.

在这里插入图片描述
操作系统会为每一个底层硬件创建struct file结构体,此结构体中一定包含了两个函数指针,分别指向这个硬件对应的读方法和写方法.

所以当我们使用键盘或打开显示器时,就会有对应的指针指向对应的那个方法。
所以当我们使用键盘时,0S就会去找到那个structfile,并且找到里面的方法调用。当我们从 struct file 的角度向上看时,就不用关心底层外设的差异了,操作它们的方法都是:read/write的函数指针,在上层我们看到是所有设备就叫做 一切皆文件!

6. 理解输出输入重定向

根据上面的推论,如果我先把1号描述符关闭了,再打开一个文件,它的描述符就应该是1,此时再进行输出会发现什么?

int main()
{close(1);int fd = open("log.txt",O_WRONLY | O_CREAT | O_TRUNC, 0666);printf("fd: %d\n",fd);fprintf(stdout,"hello fprintf,我是一号文件描述符\n");return 0;
}

在这里插入图片描述

两个现象,第一个确实如刚刚所说的新打开的文件的描述符就是1,并且此时使用printf输出也不会输出到屏幕使用fprintf向stdout也不会输出到屏幕而是输出到文件log.txt中.说明stdout只认文件描述符1,不管1此时还是不是标准输出,printf函数也是如此.

结论:重定向本质就是在OS内部修改fd对应的内容指向.

在这里插入图片描述

7. 重定向的系统调用

如果每次写重定向都要先关闭一个文件,再来操作未免有些麻烦了,可以直接使用系统调用dup或dup2函数.
在这里插入图片描述

我们一般都使用dup2,它的意思是把原本写入到newfile 文件的内容,重定向到 oldfile 文件中!最终和oldfd描述符是一样的。比如现在想把本来应该打印在显示器(1号描述符)的信息打印在log.txt中(3号描述符),应该这样使用:

open("log.txt",O_WRONLY | O_CREAT);
dup2(3,1);

8. 总结

文件描述符是学习Linux下I/O的关键,而基础IO的知识将会一直陪伴我们到学习Linux网络和高级IO,掌握文件描述符fd的本质对后续的学习至关重要!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/502291.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++:范围for

范围for(range-based for)是C的一种循环结构, 是在 C11 这个标准中引入的,这种类型的for循环使得遍历数组、容器中的元素更加简便和直观。 一、范围for语法 for ( 类型 变量名 : 数组名 ) 语句 //多条语句需要加⼤括号 示例&#…

C语言 递归编程练习

1.将参数字符串中的字符反向排列,不是逆序打印。 要求:不能使用C函数库中的字符串操作函数。 比如: char arr[] "abcdef"; 逆序之后数组的内容变成:fedcba 1.非函数实现(循环) 2.用递归方法…

Spring Boot - 日志功能深度解析与实践指南

文章目录 概述1. Spring Boot 日志功能概述2. 默认日志框架:LogbackLogback 的核心组件Logback 的配置文件 3. 日志级别及其配置配置日志级别3.1 配置文件3.2 环境变量3.3 命令行参数 4. 日志格式自定义自定义日志格式 5. 日志文件输出6. 日志归档与清理7. 自定义日…

USB子系统学习(一)USB电气信号

文章目录 1、声明2、USB协议概述3、USB电气信号3.1、USB基础概念3.1.1、低速/全速信号电平3.1.2、高速信号电平 3.2、学习目标3.3、设备断开与连接3.3.1、连接3.3.2、断开 3.4、复位3.5、设备速率识别3.5.1、低速/全速3.5.2、高速 3.6、数据信号3.6.1、低速/全速的SOP和EOP3.6.…

Android GameActivity(NativeActivity)读写文件

最近研究native android相关内容,其中最棘手的就是文件读写问题,最主要的是相关的文档很少。这里写下我所知道的方法。 由于本人使用的是Android14[arm64-v8a]版本的设备,能访问的路径相当有限,如果想要访问更多的路径,就不得不申…

安卓入门十一 常用网络协议四

MQTT(Message Queuing Telemetry Transport) MQTT是一种轻量级的、发布/订阅模式的消息传输协议。它被设计用于在低带宽或不稳定网络环境下,实现物联网设备之间的可靠通信。 4.1 MQTT详细介绍 发布/订阅模式:MQTT 使用发布/订…

气膜球幕:引领元宇宙时代的科技与艺术光影盛宴—轻空间

在科技与艺术交织的时代,未来的观影体验将不再受限于传统屏幕的束缚。随着气膜球幕的崭新亮相,突破性的光影效果和沉浸式体验让我们走进了一个全新的视听世界。这不仅仅是一个简单的球形影院,它是连接现实与虚拟、科技与艺术、光与影的桥梁&a…

Hyperbolic dynamics

http://www.scholarpedia.org/article/Hyperbolic_dynamics#:~:textAmong%20smooth%20dynamical%20systems%2C%20hyperbolic%20dynamics%20is%20characterized,semilocal%20or%20even%20global%20information%20about%20the%20dynamics. 什么是双曲动力系统? A hy…

kernel32.dll动态链接库报错要怎解决?详细解析kernel32.dll文件缺失解决方案

Kernel32.dll动态链接库报错详解与解决方案 在电脑的日常使用中,我们时常会遇到各种系统报错,其中kernel32.dll文件的报错尤为让人头疼。作为一名在软件开发领域摸爬滚打多年的从业者,我将为大家深入解析kernel32.dll文件的重要性&#xff0…

win10 npm login 登陆失败

npm login 命令总是登陆失败 提示我们设置带proxy。我们本地找到这个 找到代理地址 进行关键信息的设置 npm config set proxy http://xxxx:xxxx npm config set https-proxy http://xxx:xxx 设置完之后在执行npm login即可

[Qt] 输入控件 | Line | Text | Combo | Spin | Date | Dial | Slider

目录 输入类控件 1、Line Edit 录入个人信息 使用正则表达式验证输入框的数据 验证两次输入的密码一致 切换显示密码 2、Text Edit 获取多行输入框的内容 验证输入框的各种信号 3、Combo Box 使用下拉框模拟麦当劳点餐 从文件中加载下拉框的选项 4、Spin Box 调整…

SpringCloud源码-Ribbon

一、Spring定制化RestTemplate,预留出RestTemplate定制化扩展点 org.springframework.cloud.client.loadbalancer.LoadBalancerAutoConfiguration 二、Ribbon定义RestTemplate Ribbon扩展点功能 org.springframework.cloud.netflix.ribbon.RibbonAutoConfiguratio…

基于单片机的数字电子秒表设计

此文章谨为课设记录 一、实验要求 题目六 数字电子时钟 基本要求: (1) 设计一个单片机电子时钟,设计的电子时钟通过数码管显示; (2) 具有能通过按键实现设置时间的功能; (3) 显示格式为小时十位、小时个位,分…

【业务场景】sql server从Windows迁移到Linux

目录 1.背景 2.Linux安装sql server 3.服务器不开端口的问题 4.数据库导入导出问题 1.背景 博主在24年年底接手运维了一个政府的老系统,整个应用和数据库单点部署在一台Windows Server服务器上,数据库选型是经典的老项目标配——sql server。随着近…

Flink CDC 自定义函数处理 SQLServer XML类型数据 映射 doris json字段方案

Flink CDC 自定义函数处理 SQLServer XML类型数据方案 1. 背景 因业务使用SQLServer数据库,CDC同步到doris 数仓。对于SQLServer xml类型,doris没有相应的字段对应, 可以使用json来存储xml数据。需要进行一步转换。从 flink 自定义函数入手…

Jdk动态代理源码缓存优化比较(JDK17比JDK8)

目录 JDK 8的缓存实现 JDK 17的缓存实现 优化比较 总结实际应用影响 JDK 8的缓存实现 // JDK 8 private static final WeakCache<ClassLoader, Class<?>[], Class<?>> proxyClassCache new WeakCache<>(new KeyFactory(), new ProxyClassFact…

《learn_the_architecture_-_aarch64_exception_model》学习笔记

1.当发生异常时&#xff0c;异常级别可以增加或保持不变&#xff0c;永远无法通过异常来转移到较低的权限级别。从异常返回时&#xff0c;异常级别可能会降低或保持不变&#xff0c;永远无法通过从异常返回来移动到更高的权限级别。EL0级不进行异常处理&#xff0c;异常必须在比…

声音是如何产生的

一、音频概述 RTMP中一般音频采用aac编码&#xff0c;采样率为44100HZ, 每帧1024采样&#xff0c;帧率43&#xff0c;23.2ms一帧 RTC中一般音频采用opus编码&#xff0c;采样率为48000HZ&#xff0c;每帧480采样&#xff0c;帧率100&#xff0c;10ms一帧 通道数&#xff08;c…

Docker新手:在tencent云上实现Python服务打包到容器

1 使用docker的原因 一致性和可移植性&#xff1a;Docker 容器可以在任何支持 Docker 的环境中运行&#xff0c;无论是开发者的笔记本电脑、测试服务器还是生产环境。这确保了应用在不同环境中的行为一致&#xff0c;减少了“在我的机器上可以运行”的问题。 隔离性&#xff…

Science Robotics让软机器人“活”得更久的3D打印!

软机器人硬件在医疗、探索无结构环境等领域有广泛应用&#xff0c;但其生命周期有限&#xff0c;导致资源浪费和可持续性差。软机器人结合软硬组件&#xff0c;复杂组装和拆卸流程使其难以维修和升级。因此&#xff0c;如何延长软机器人的生命周期并提高其可持续性成为亟待解决…