一文读懂“生成式 AI”

一、前言

本文基于谷歌的:《Introduction to Generative AI》 并且借助 ChatGPT 整理而成,帮助大家理解生成式 AI 这个概念。
image.png
image.png
主要包括 4 个部分:

  • 生成式 AI 的定义
  • 生成式 AI 的工作原理
  • 生成式 AI 模型的分类
  • 生成式 AI 的应用

二、生成式 AI 介绍

2.1 生成式 AI 的定义

人工智能不等于机器学习

人工智能是关于赋予机器以模拟人类智能的能力的广泛领域。它涉及使计算机系统能够执行类似于人类智能的任务,如语音识别、图像识别、自然语言处理和决策制定等。
image.png

人工智能旨在使机器具备像人类一样的推理、学习、问题解决和决策能力
image.png

机器学习是人工智能的一个分支,它是通过数据和统计模型来让机器自动学习和改进的一种方法。机器学习的目标是设计和开发算法,使计算机系统能够从数据中学习,而无需明确地编程。通过训练模型,机器学习使机器能够识别模式、做出预测和进行决策

简而言之,人工智能是一个更广泛的概念,涵盖了使机器拥有人类智能的目标和技术。机器学习是实现人工智能的一种方法,通过让机器从数据中学习和自动调整模型来实现任务。因此,机器学习是人工智能的一个子集,但人工智能不仅限于机器学习,还包括其他方法和技术。

机器学习中的监督学习和无监督学习


监督学习和无监督学习是机器学习中两种不同的学习方法。
image.png
监督学习是一种通过使用带有标签的训练数据来训练模型的学习方法。在监督学习中,训练数据包含输入特征和对应的标签或输出结果。模型通过学习输入特征与标签之间的关系,从而能够对新的未标记数据进行预测。常见的监督学习算法包括线性回归、逻辑回归、决策树和支持向量机等。监督学习适用于需要进行分类、回归和预测等任务。

image.png
无监督学习是一种在没有标签的情况下从未标记的数据中自动发现模式和结构的学习方法。在无监督学习中,训练数据不包含标签信息,模型需要通过对数据进行聚类、降维或关联规则挖掘等技术来发现隐藏的结构和模式。无监督学习可以帮助我们理解数据的分布、发现异常点、进行数据可视化和特征提取等。常见的无监督学习算法包括聚类算法(如K均值聚类)、主成分分析(PCA)和关联规则挖掘等。

image.png

简而言之,监督学习使用有标签的训练数据来训练模型,并根据已知的输入和输出之间的关系进行预测。无监督学习则是在没有标签的情况下对未标记数据进行学习,通过发现数据中的模式和结构来获得洞察和理解。这两种学习方法在解决不同类型的问题和应用场景中发挥着重要的作用。

深度学习

深度学习是机器学习的分支。
image.png
机器学习是一种通过算法和模型让计算机系统从数据中学习的方法。它的目标是使机器能够自动从数据中发现模式、进行预测和做出决策,而无需明确地编程。机器学习算法可以根据给定的输入数据进行学习,并通过调整模型的参数来优化性能。常见的机器学习算法包括线性回归、决策树、支持向量机和随机森林等。
image.png

深度学习是机器学习的一个特定领域,它利用人工神经网络模型进行学习和训练。深度学习模型由多个层次(称为神经网络的层)组成,每一层都会对输入数据进行变换和表示。这些网络层通过一系列的非线性转换将输入数据映射到输出结果。深度学习模型的核心是深度神经网络(Deep Neural Network,DNN),它可以通过大量的标记数据进行训练,从而实现高度准确的预测和分类任务。
image.png

总的来说,机器学习是一种更通用的学习方法,可以使用各种算法和技术,而深度学习是机器学习的一个特定分支,使用深度神经网络来实现学习和预测。深度学习的主要优势在于它可以自动从原始数据中学习更高级别的特征表示,从而提供更准确和复杂的模型。然而,深度学习通常需要更大规模的数据和更高的计算资源来进行训练,相对于传统机器学习算法而言更为复杂。

生成式 AI 和深度学习的关系

image.png
生成式 AI 是深度学习的分支。

判别模型和生成模型

image.png判别模型(Discriminative Model)和生成模型(Generative Model)是机器学习中两种不同类型的模型,它们的主要区别在于其对数据的建模方式和应用领域。
image.png
判别模型是一种直接对条件概率进行建模的模型。它主要关注的是给定输入数据,预测输出类别或标签的概率分布。判别模型通过学习输入和输出之间的关系来建立决策边界,从而对新的输入数据进行分类。常见的判别模型包括逻辑回归、支持向量机和深度神经网络等。判别模型通常用于分类、回归和标注等任务。
image.png
生成模型是一种对联合概率分布进行建模的模型。它不仅学习输入和输出之间的关系,还学习了生成输入数据的过程。生成模型可以通过学习数据的分布和特征之间的关系来生成新的样本数据。常见的生成模型包括高斯混合模型(Gaussian Mixture Model,GMM)和生成对抗网络(Generative Adversarial Network,GAN)等。生成模型通常用于生成新的图像、语言模型和数据增强等任务。
image.png
判别模型和生成模型的选择取决于具体的问题和任务需求。判别模型更关注分类和预测的准确性,可以直接对输入和输出之间的关系进行建模。而生成模型更关注数据的生成过程,可以模拟数据的分布和生成新的样本。生成模型可以用于生成新的数据,但在分类和预测任务上可能不如判别模型准确。
image.png
总的来说,判别模型关注输入和输出之间的关系,用于分类和预测等任务。生成模型关注数据的生成过程,可以生成新的样本数据。选择判别模型还是生成模型应根据具体问题的需求和任务目标来决定。

生成式 AI 的监督、半监督和无监督学习

image.png
传统的监督、无监督学习,将训练数据和标注数据喂给模型,可以作出预测、分类和聚类。

image.png
生成式 AI 的监督、半监督、无监督学习,将训练数据、打标数据和未打标数据给基础模型,然后生成新的内容,最终实现文本、代码和图片的生成。

生成式 AI 和传统的编程和神经网络的区别

image.png
传统的编程方式,需要硬编码来描述猫的一些特征。
image.png
神经网络算法可以通过学习是不是猫的样本,然后你给出一张图片它可以判断是否为一个猫。
image.png
LaMDA 、PaLM、GPT 等生成式模型在喂了大量内容后,可以直接问猫是什么?它讲给出它所知道的答案。

生成式 AI 的定义

image.png
生成式 AI 是什么?

  • 生成式 AI 是人工智能的一个分支,可以根据已经学习的内容生成新的内容。
  • 从现有的内容中学习的过程叫做训练,训练的结果是创建一个统计模型。
  • 当用户给出提示词,生成式 AI 将会使用统计模型去预测答案,生成新的文本来回答问题。

生成式模型的分类

image.png

【生成式语言模型】是基于自然语言处理的技术,通过学习语言的规律和模式来生成新的文本。它可以根据之前的上下文和语义理解生成连贯的句子或段落。生成式语言模型的训练基于大规模的文本数据,例如新闻文章、小说或网页内容。通过学习文本中的单词、短语和句子之间的关系,生成式语言模型可以自动生成新的、具有逻辑和语法正确性的文本,如文章、对话和诗歌等。
【生成式图片模型】是基于计算机视觉的技术,通过学习图像的特征和结构来生成新的图像。它可以从之前的训练数据中学习到图像的特征表示和统计规律,然后使用这些知识生成新的图像。生成式图片模型的训练通常基于大规模的图像数据集,例如自然图像或艺术作品。通过学习图像的纹理、颜色、形状和物体之间的关系,生成式图片模型可以生成具有视觉真实感或艺术风格的新图像,如自然风景、人像或抽象艺术作品等。

image.png
生成式 AI 输入图片,输出可以是文本(看图说话、可视化问答、图片搜索)、图片(超分辨率,图片修改)和视频(动画)。

super resolution 是超分辨率的英文表达,它是指通过硬件或软件的方法提高原有图像的分辨率,通过一系列低分辨率的图像来得到一幅高分辨率的图像的过程。

image.png
生成式 AI 输入是文本,输出可以是文本(翻译、总结、问答、语法纠正)、图片(图片、视频)、音频(文本到发音)、决策(玩游戏)。

2.2 生成式 AI 的工作原理

image.png

生成式语言模型学习训练数据中的语言模式,然后给出一些文本,它们将会预测后面的内容是什么。
image.png

image.png

image.png

image.png

将用户的输入进入 Transformer 模型的编码器和解码器进行处理,然后在生成式预训练模型中进行处理,最终将结果输出给用户。

预训练:

  • 海量数据
  • 数十亿参数
  • 无监督学习

image.png
模型通过学习大量的文本数据,尝试预测下一个单词或短语。然而,有时候模型会生成一些不符合语法规则或意义不明的词语或短语,这被称为"幻觉(hallucinations)"。
image.png

幻觉可以视为模型在生成过程中的错误或缺陷,可能由于训练的数据量不够、模型的训练数据质量差、没有给模型足够的上下文、没有给模型足够的约束导致的。

image.png
提示词是作为大语言模型输入的一段文本,它可以以各种方式用来控制模型的输出。

image.png
提示词设计是创建提示的过程,从而从大型语言模型中生成期望的输出。正如我们之前提到的,生成 AI 在很大程度上取决于你输入的训练数据。它分析输入数据的模式和结构,生成内容。因此输入的质量决定了输出的质量。

2.3 生成式模型的类型

image.png
文本到文本生成模型旨在接收一个文本输入,并生成一个相关的文本输出。这种模型可用于机器翻译、文本摘要、对话生成、故事生成等任务。生成模型可以学习从输入到输出的映射关系,以生成具有语义和语法正确性的新文本。

常见应用场景:

  • 机器翻译:将一种语言的文本翻译成另一种语言。
  • 文本摘要:从长篇文本中生成简洁的摘要或概括。
  • 对话生成:生成自然流畅的对话,可用于虚拟助手或聊天机器人。
  • 故事生成:自动生成连贯、有趣的故事或叙述。

image.png
文本到图像生成模型接收一个文本描述作为输入,并生成对应的图像输出。这种模型可以将自然语言描述转化为视觉内容,用于图像生成、图像标注、图像编辑等任务。通过学习文本描述和图像之间的语义关联,模型可以生成与文本描述相匹配的图像。

常见应用场景:

  • 图像生成:根据文本描述生成与之相匹配的图像。
  • 图像标注:将图像描述转化为自然语言标注。
  • 图像编辑:通过文本指令实现图像编辑,如添加、修改或删除特定内容。

image.png
文本到视频或三维生成模型接收一个文本输入,并生成相应的视频或三维模型输出。这些模型可以用于视频生成、场景合成、三维模型生成等任务。模型可以学习从文本描述到视频序列或三维模型的转换过程,生成与文本描述相符的动态视频或立体模型。

常见应用场景:

  • 视频生成:根据文本描述生成与之相符的动态视频。
  • 场景合成:根据文本描述生成三维场景或虚拟现实体验。
  • 三维模型生成:根据文本描述生成具有特定属性或形状的三维模型。

image.png
文本到任务生成模型旨在根据文本输入执行特定任务。这些模型可以接收自然语言指令或问题,并生成相应的任务执行结果。例如,问答生成模型可以接收问题,并生成相应的答案;代码生成模型可以接收自然语言描述,并生成相应的代码实现。这种模型能够将文本指令转化为任务执行的具体操作。

常见应用场景:

  • 问答生成:根据问题生成相应的答案或解决方案。
  • 代码生成:将自然语言描述转化为代码实现。
  • 指令执行:根据自然语言指令执行特定的任务,如图像处理、数据操作等。

image.png

image.png
模型花园:Google Vertex AI 中有很多语言和视觉方面的基础模型可以选择。

image.png
Model Garden 是 Google 的一个开源项目,旨在为研究者和开发者提供预训练的机器学习模型和相关的训练和优化技术。这些模型覆盖了许多不同的机器学习任务,例如图像分类、物体检测和自然语言处理等。

Model Garden 中的模型分为两大类:语言模型和视觉模型。

  1. 语言模型:这类模型可以进行一些特定的语言处理任务,如:
    • 提取(Extraction):这类任务包括语法分析(Syntax Analysis),它可以理解文本的语法结构。
    • 分类(Classification):这类任务包括实体分析(Entity Analysis,识别文本中的特定实体,如人名、地名等)、内容分类(Content Classification,根据内容的主题进行分类)、情感分析(Sentiment Analysis,评估文本的情感倾向,如积极、消极等)、实体情感分析(Entity Sentiment Analysis,评估特定实体在文本中的情感倾向)。
  2. 视觉模型:这类模型可以进行一些特定的视觉任务,如:
    • 分类(Classification):这类任务包括对象检测(Object Detector,识别图片中的特定对象)。
    • 检测(Detection):这类任务包括人流量分析(Occupancy Analytics,分析特定区域内的人流量)、人/车辆检测(Person/Vehicle Detector,识别图片中的人或车辆)、个人防护设备检测(PPE Detector,识别图片中是否有人穿戴个人防护设备)、人物模糊(Person Blur,将图片中的人物进行模糊处理)。

这些模型都是为特定的任务进行训练和优化的,可以用来解决一些具体的实际问题。

2.4 生成式 AI 应用

image.png
生成式 AI 在文本(生成写作、AI 笔记、销售文案、聊天机器人、邮件编写等)、代码(代码生成、代码文档、文本转SQL、Web 应用构建等)、图片、发音、视频、3D 等领域都有大量的市场。

Bard 代码生成演示:
image.png

image.png
image.png

Bard 代码生成能力:
image.png

GenAI Studio 介绍:
image.png
“Gen AI Studio” 平台,可以用来微调模型,将模型部署到生产环境,创建聊天机器人,生成图像,以及其他更多功能。

  1. 语言:在 “Gen AI Studio” 平台上,用户可以测试,微调,并部署生成型 AI 语言模型。例如,可以使用PaLM API(可能是一种基于 Pathways 语言模型的 API)进行内容生成、聊天、摘要生成等等。
  2. 视觉:在 “Gen AI Studio” 平台上,用户可以编写文本提示来生成新的图像,或者在已有的图像上生成新的区域。这可能是利用一种文本到图像的生成模型,通过用户提供的文本提示,模型可以生成与文本内容相关的图像。

总的来说,"Gen AI Studio"是一个集成了多种AI模型和功能的平台,可以方便用户进行AI模型的微调,部署,以及其他的应用。
image.png

Generative AI App Builder 可以用来创建基于生成式人工智能的应用,而且不需要编写任何代码。这个工具使得无需深入了解编程或人工智能的用户也能创建出使用生成式人工智能模型的应用。这些应用可能包括但不限于内容生成、图像生成、音频生成等各种基于生成式人工智能模型的应用。

image.png
PaLM API 和 MakerSuite 简化生成性开发周期。

  1. “PaLM API”:这是一个简单的入口,让开发者能够使用Google的大型语言模型(LLMs)。它为开发者提供了访问已经为特定用例(如摘要、分类等)优化过的模型的途径。
  2. “MakerSuite”:这是一个入门级的工具,让开发者可以开始原型设计和构建生成性AI应用。它允许开发者迭代优化提示(prompts),用合成数据扩充数据集,并调整定制模型。

"PaLM API"是为开发者提供方便访问和使用大型语言模型的接口,而"MakerSuite"则是一种便于开发者开始设计和构建生成性AI应用的工具,它提供了在构建应用的过程中可能需要的一系列功能,如迭代优化提示、数据集扩充、模型调优等。
image.png


创作不易,如果本文对你有帮助,欢迎点赞、收藏加关注,你的支持和鼓励,是我创作的最大动力。
在这里插入图片描述

欢迎加入我的知识星球,知识星球ID:15165241 一起交流学习。
https://t.zsxq.com/Z3bAiea 申请时标注来自CSDN。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/54593.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习实战6-卷积神经网络(Pytorch)+聚类分析实现空气质量与天气预测

文章目录 一、前期工作 导入库包导入数据主成分分析(PCA)聚类分析(K-means) 二、神经网络模型建立 三、检验模型 大家好,我是微学AI,今天给大家带来一个利用卷积神经网络(pytorch版)实现空气质量的识别分类与预测。 我们知道雾霾天气是一种大气污染状…

chatgpt赋能python:Python主成分分析(PCA):什么是PCA及其在机器学习中的应用?

Python主成分分析(PCA):什么是PCA及其在机器学习中的应用? 介绍PCA 主成分分析(PCA)是一种数据降维技术,可以用于减少数据集中的特征数量,并创建新的独立特征,可以更好…

chatgpt赋能python:Python主成分分析简介

Python主成分分析简介 主成分分析(PCA)是一种常用的数据分析技术,用于降低多维数据集的维度,并发现主要特征。在Python中,可以使用scikit-learn库来实现PCA。 PCA可以应用于数据挖掘、图像处理、信号处理等领域。通过…

chatgpt赋能python:Python主成分分析(PCA)结果解读

Python主成分分析(PCA)结果解读 主成分分析(PCA)作为一种重要的多元统计方法,可以对多个变量进行降维处理,从而提取出相关性最高的主成分作为新的维度来进行数据分析和可视化。Python是一种流行的编程语言,它提供了许多快速和灵活的PCA库&am…

基于主成分分析对浙江省各区县综合实力进行排名

个人主页:https://yang1he.gitee.io 干货会越来越多的,欢迎来玩 基于主成分分析对浙江省各区县综合实力进行排名 Chatgpt,Yangchichi 摘 要: 本文基于主成分分析方法,对浙江省各区县的综合实力进行排名。采集的数据包括GDP总量、人均GDP、固…

程序员是如何一步一步被诈骗的?

后来我终于明白电信诈骗来的时候像天气一样难以预料,但是你谨慎对待也是完成可以避免的。下边是来自一位在2020 年 4月30日 下午遭遇电信诈骗的读者的亲身经历,请大家认真看完,希望有所启发和帮助。 前言 今天之前,每每看到一些电…

涨知识了!网络招嫖诈骗产业流程及风险分析

近期,360手机先赔收到用户反馈,在网络招嫖过程中被骗5100元。通过对类似诈骗手法的分析汇总,可以看出网络招嫖诈骗流程化,大致分为引流、切客、诱导支付三个环节。 网络招嫖诈骗流程 引流 在色情网站发帖或者进行资源板块交换&a…

python算法实现反欺诈案例完整建模流程!电信诈骗这么多?

近年来,国内的电信诈骗案件呈愈演愈烈之势,本文以某省电信公司简化版本的防诈骗模型为案例,利用python机器学习工具,使用随机森林算法,从数据处理、特征工程、到反诈骗模型的模型的构建及评估等完整流程进行一个简单的…

近期关于AIGC方面的学习笔记和思路整理

LLM 对于LLM,我现在重点关注在这几个方面: 开源且可私有化部署的代码生成模型: 因为大部分软件企业对于安全都很重视,文档、数据、代码一般都会尽量避免被泄露。所以很难使用类似Copilot或者OpenAI的Bito这种需要连到互联网上的…

AgentGPT安装使用教程

简介 AgentGPT允许您配置和部署自主人工智能代理。命名你自己的自定义人工智能,让它实现任何可以想象的目标。它将试图通过思考要做的任务、执行这些任务并从结果中学习来达到目标🚀. AgentGPT英文官方网站:reworkd/AgentGPT AgentGPT中文安…

用热爱,走一些“远”路!

相伴:开源十四载,更适合成长中企业的项目管理工具 盛夏来临,2023年也过去了一半。回顾上半年,禅道团队不断突破,拥抱变化,迎接新的机遇和挑战,一些来之不易的突破,让我们惊叹、思考…

告别过去,拥抱未来:一个Java开发者的成长之路

时光飞逝,不知不觉已经到了大四毕业的时候。回顾这四年的学生生涯,Java开发是让我最为热爱和投入的一部分。在这里,我想和大家分享我在Java开发方面的收获、经验和感悟,同时也向过去的自己告别,迎接未来的挑战。 从入门…

俩小伙一晚上写了个AI应用,月入两万??(文末附开发教程)

开发出一款能够与 AI 对话生成和编辑思维导图的工具,听起来似乎只能是一群专业的 AI 背景团队花费大量的时间和精力训练模型,打磨应用才能完成的事情。 但是,两名大学生却在一夜之间完成了,就像炼金术士将庸俗的材料转化成黄金一样…

俩小伙一晚上写了个 AI 应用,月入两万??(文末附开发教程)

开发出一款能够与 AI 对话生成和编辑思维导图的工具,听起来似乎只能是一群专业的 AI 背景团队花费大量的时间和精力训练模型,打磨应用才能完成的事情。 但是,两名大学生却在一夜之间完成了,就像炼金术士将庸俗的材料转化成黄金一…

【CNN基础】一文读懂批归一化(Batch Normalization)

目录 1、批归一化(Batch Normalization)的含义以及如何理解 2、批归一化(BN)算法流程 3、什么时候使用Batch Normalization 总结 1、批归一化(Batch Normalization)的含义以及如何理解 Batch Normaliza…

桌面安装包里的安装程序都包含什么?

下图是安装包里面的内容: ArcGIS Coordinate Systems Data – 包含 GEOCON 变换方法所需要的数据文件以及美国(VERTCON 和 GEOID12B)和世界 (EGM2008) 的垂直变换文件 我们一般不采用GEOCON方法转换数据,所以对我们来说这个包用处…

chatgpt赋能python:Python股票买入指南:如何用Python优化股票交易

Python股票买入指南:如何用Python优化股票交易 在当今的数字时代,称为“量化交易”的股票交易战略越来越受欢迎。这种交易方式基于数据分析和算法,利用计算机快速处理信息和大数据量的优势,从而提高投资回报率。 Python作为一种…

靠AI六小时搞出蝙蝠侠动画电影,小哥喜提百万浏览量

詹士 发自 凹非寺量子位 | 公众号 QbitAI 用ChatGPT和MidJourney制作动画电影,6小时足矣。 一位名叫Ammaar Reshi的湾区设计师用上述两个生成AI模型,成功做出一部蝙蝠侠的动画小电影,效果也是相当可。 片头雷鸣电闪,直接把蝙蝠侠阴…

基于大模型来构建自己非结构化数据集的问答数据对

在instruct gpt 出来以前文本生成的输入只有原文。出现了instruct gpt以后。我们需要做一个特征丰富工程。通过特征丰富工程来提升文本生成任务的效果。如果仅仅是问答那就不要做这么大的模型。问答一般长度在1024以内可以解决掉。你见过什么样子的对话是长到没边际的吗。我想&…

9000万美元的天价酬劳!马斯克起诉撮合推特收购的律所“趁火打劫”

整理 | 朱珂欣 出品 | CSDN程序人生(ID:coder_life) 最近,马斯克又搞新事情了。 据 CNBC 报道,7 月 5 日,马斯克向加州三藩市高等法院提起诉讼,指控负责 Twitter 收购案的美国律所 Wachtell,…