python学opencv|读取图像(四十)掩模:三通道图像的局部覆盖

【1】引言

前序学习了使用numpy创建单通道的灰色图像,并对灰色图像的局部进行了颜色更改,相关链接为:

python学opencv|读取图像(九)用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客

之后又学习了使用numpy创建三通道的彩色图像,并对彩色图像按照不同通道进行了颜色更改,相关链接为:

python学opencv|读取图像(十)用numpy创建彩色图像_python新建一张caise的图片-CSDN博客

实际上还会有一些需求,只需要改变三通道彩色图像的局部颜色,也就是获得掩模效果,这就是今天文章的目标。

【2】可行性分析

根据上述文章,修改彩色图像的颜色是通过修改各个通道的BGR值实现的,修改灰度图像的颜色是通过修改各个像素点的BGR(本质上由于只有一个通道,所以本质上也是通过修改通道的BGR值实现 )实现。

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv模块canvas = np.ones((580, 580, 3), np.uint8)   # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式

那如果对彩色图像直接修改像素点的BGR,应该也会有颜色变化。

【3】代码测试

在上述分析的基础上,直接尝试修改像素点的BGR值。

首先是引入相关模块,绘制出画布,此时的画布为纯黑色:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv模块canvas = np.ones((580, 580, 3), np.uint8)   # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式

然后在纯黑色的画布上,先把第50到300行,第20到280列改为纯白色像素,然后显示完整的画布:

canvas[50:300,20:280,:]=255 #第50到300行,第20到280列为纯白色像素cv.imshow('yanmo', canvas)  # 在屏幕展示掩模的效果
cv.imwrite('yanmo.png', canvas)  # 保存图像

之后把画布改为纯白色,相应的把区域第50到300行,第20到280列改为纯黑色像素,然后显示完整的画布:

canvas[:,:,:]=255 #画布改为纯白色像素
canvas[50:300,20:280,:]=0 #第50到300行,第20到280列为纯黑色像素
cv.imshow('yanmo1', canvas)  # 在屏幕展示掩模的效果cv.imwrite('yanmo1.png', canvas)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行后,获得的掩模效果为:

图1 黑色画布白色掩模

图2 白色画布黑色掩模 

 由图1和 图2可见,三通道彩色图像,通过改像素点值的做法,也能实现修改图像区域颜色的目标,也就是实现掩模效果。

此时的完整代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv模块canvas = np.ones((580, 580, 3), np.uint8)   # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式canvas[50:300,20:280,:]=255 #第50到300行,第20到280列为纯白色像素cv.imshow('yanmo', canvas)  # 在屏幕展示掩模的效果
cv.imwrite('yanmo.png', canvas)  # 保存图像canvas[:,:,:]=255 #画布改为纯白色像素
canvas[50:300,20:280,:]=0 #第50到300行,第20到280列为纯黑色像素
cv.imshow('yanmo1', canvas)  # 在屏幕展示掩模的效果cv.imwrite('yanmo1.png', canvas)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

【4】细节说明

在彩色图像的掩模效果实现中,未单独设置BGR通道值。

尝试修改第二通道值,只需要增加代码:

canvas[:,:,:]=255 #画布改为纯白色像素
canvas[50:300,20:280,:]=0 #第50到300行,第20到280列为纯黑色像素
canvas[:,:,1]=0 #第二个通道值
cv.imshow('yanmo2', canvas)  # 在屏幕展示掩模的效果
cv.imwrite('yanmo2.png', canvas)  # 保存图像

此时新获得的图像为:

图3 白色画布黑色掩模 + 所有二通道值=0

图3出现了预料之外的结果,为探清缘由,在所有的掩模操作下增加代码,读取掩模区域中的像素点BGR值:

print("黑色画布白色掩模像素数为[100,100]位置处的BGR=", canvas[100, 100])  # 获取像素数为[100,100]位置处的BGR

这时候获得的BGR输出值为:

图4  BGR值

可见,由于画布颜色强制为白色,所有的BGR值本来是统一为255,但把第二通道的值改为0后,画布的BGR组成就变为[255 0 255],这时候画布就变成粉红色。

为证明上述分析,新增一段代码来做验证:

canvas[:,:,:]=255 #画布改为纯白色像素
canvas[:,:,1]=0 #第二个通道值
cv.imshow('yanmo3', canvas)  # 在屏幕展示掩模的效果
cv.imwrite('yanmo3.png', canvas)  # 保存图像
print("白色画布+所有二通道BGR=0像素数为[100,100]位置处的BGR=", canvas[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("白色画布+所有二通道BGR=0像素数为[500,500]位置处的BGR=", canvas[100, 100])  # 获取像素数为[500,500]位置处的BGR

此时,先规划白色画布,然后直接强制第二通道值为0。

代码运行后,获得的图像为:

图5 白色画布+所有二通道值=0

此时输出的图像为粉红色,读取的像素点BGR为:

图6 白色画布+所有二通道值像素BGR值

由图6可见,各个像素点的BGR值都是[255 0 255],和图3所示的粉红色图像相应像素点的BGR值读取效果一致。

【5】总结

掌握了python+opencv三通道彩色图像掩模效果的实现技巧。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/5580.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【2024年终总结】我与CSDN的一年

👉作者主页:心疼你的一切 👉作者简介:大家好,我是心疼你的一切。Unity3D领域新星创作者🏆,华为云享专家🏆 👉记得点赞 👍 收藏 ⭐爱你们,么么哒 文章目录 …

MySQL主从配置

一、 主从原理 MySQL 主从同步是一种数据库复制技术,它通过将主服务器上的数据更改复制到一个或多个从服务器,实现数据的自动同步。主从同步的核心原理是将主服务器上的二进制日志复制到从服务器,并在从服务器上执行这些日志中的操作。 二、主…

【SpringCloud】黑马微服务学习笔记

目录 1. 关于微服务 ?1.1 微服务与单体架构的区别 ?1.2 SpringCloud 技术 2. 学习前准备 ?2.1 环境搭建 ?2.2 熟悉项目 3. 正式拆分 ?3.1 拆分商品功能模块 ?3.2 拆分购物车功能模块 4. 服务调用 ?4.1 介绍 ?4.2 RustTemplate?的使用 4.3 服务治理-注册中…

windows git bash 使用zsh 并集成 oh my zsh

参考了 这篇文章 进行配置,记录了自己的踩坑过程,并增加了 zsh-autosuggestions 插件的集成。 主要步骤: 1. git bash 这个就不说了,自己去网上下,windows 使用git时候 命令行基本都有它。 主要也是用它不方便&…

解决leetcode第3418题机器人可以获得的最大金币数

3418.机器人可以获得的最大金币数 难度:中等 问题描述: 给你一个mxn的网格。一个机器人从网格的左上角(0,0)出发,目标是到达网格的右下角(m-1,n-1)。在任意时刻,机器人只能向右或向下移动。 网格中的每个单元格包含一个值coin…

opengrok_windows_环境搭建

目录 软件列表 软件安装 工程索引 ​编辑 工程部署 问题列表 软件列表 软件名下载地址用途JDKhttps://download.java.net/openjdk/jdk16/ri/openjdk-1636_windows-x64_bin.zipindex 使用java工具tomcathttps://dlcdn.apache.org/tomcat/tomcat-9/v9.0.98/bin/apache-tom…

c++ 与 Matlab 程序的数据比对

文章目录 背景环境数据保存数据加载 背景 ***避免数据精度误差&#xff0c;快速对比变量 *** 环境 c下载 https://github.com/BlueBrain/HighFive 以及hdf5库 在vs 中配置库 数据保存 #include <highfive/highfive.hpp> using namespace HighFive;std::string fil…

【2024 博客之星评选】请继续保持Passion

我尝试复盘自己2024年走的路&#xff0c;希望能给诸君一些借鉴。 文章目录 回头望感想与收获成长与教训今年计划感恩一些体己话 回头望 回望我的2024年&#xff0c;年初拿高绩效&#xff0c;但感觉逐渐被公司一点点剥离出中心&#xff1b;年中一直在学习防患于未然&#xff1b…

unity插件Excel转换Proto插件-ExcelToProtobufferTool

unity插件Excel转换Proto插件-ExcelToProtobufferTool **ExcelToProtobufTool 插件文档****1. 插件概述****2. 默认配置类&#xff1a;DefaultIProtoPathConfig****属性说明** **3. 自定义配置类****定义规则****示例代码** **4. 使用方式****4.1 默认路径****4.2 自定义路径**…

总结 uniapp 上不适配iphone的:new Date 时间、border线条、渐变

1、border样式缺了一边 这是错误样式&#xff1a; 需要添加: border: 1rpx solid #57c7bb; transform: rotateZ(0deg);//加入此代码解决iphone 不适配问题2、时间出现NaN 原因是因为ios中使用new Date 的时候出了问题 解决方案: 1.调整时间格式:将时间格式从"yyyy-MM-d…

【深度学习】Java DL4J 2024年度技术总结

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编…

快速学习GO语言总结

干货分享&#xff0c;感谢您的阅读&#xff01;备注&#xff1a;本博客将自己初步学习GO的总结进行分享&#xff0c;希望大家通过本博客可以在短时间内快速掌握GO的基本程序编码能力&#xff0c;如有错误请留言指正&#xff0c;谢谢&#xff01; 一、初步了解Go语言 &#xf…

【深度学习】2.视觉问题与得分函数

计算机视觉任务 可以通过神经网络搜索是什么类别的动物。 图像实际就是含有数值的三维矩阵。 像素值从0-255可以表示亮度递增的参数。数字越大&#xff0c;像素点越亮。 最后的3表示三个颜色通道&#xff0c;常见的如JPG、RGB等。 现实场景容易发生各种遮蔽现象。 计算机判断…

本地 AI 模型“不实用”?

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【Maui】下拉框的实现,绑定键值对

文章目录 前言一、问题描述二、解决方案三、软件开发&#xff08;源码&#xff09;3.1 创建模型3.2 视图界面3.3 控制器逻辑层 四、项目展示 前言 .NET 多平台应用 UI (.NET MAUI) 是一个跨平台框架&#xff0c;用于使用 C# 和 XAML 创建本机移动和桌面应用。 使用 .NET MAUI&…

AI守护煤矿安全生产:基于视频智能的煤矿管理系统架构解析

前言 本文我将介绍我和我的团队自主研发设计的一款AI产品的成果展示——“基于视频AI识别技术的煤矿安全生产管理系统”。 这款产品是目前我在创业阶段和几位矿业大学的博士共同从架构设计、开发到交付的全过程中首次在博客频道发布, 我之前一直想写但没有机会来整理这套系统的…

.NET开源的处理分布式事务的解决方案

前言 在分布式系统中&#xff0c;由于各个系统服务之间的独立性和网络通信的不确定性&#xff0c;要确保跨系统的事务操作的最终一致性是一项重大的挑战。今天给大家推荐一个.NET开源的处理分布式事务的解决方案基于 .NET Standard 的 C# 库&#xff1a;CAP。 CAP项目介绍 C…

计算机网络 (52)秘钥分配

一、重要性 在计算机网络中&#xff0c;密钥分配是密钥管理中的一个核心问题。由于密码算法通常是公开的&#xff0c;因此网络的安全性主要依赖于密钥的安全保护。密钥分配的目的是确保密钥在传输过程中不被窃取或篡改&#xff0c;同时确保只有合法的用户才能获得密钥。 二、方…

Open3D计算点云粗糙度(方法一)【2025最新版】

目录 一、Roughness二、代码实现三、结果展示博客长期更新,本文最近更新时间为:2025年1月18日。 一、Roughness 通过菜单栏的Tools > Other > Roughness找到该功能。 这个工具可以估计点云的“粗糙度”。 选择一个或几个点云,然后启动这个工具。 CloudCompare只会询问…

DDD - 整洁架构_解决技术设计困局

文章目录 Pre如何落地 DDD底层技术的更迭 整洁架构的设计主动适配器/北向适配器被动适配器/南向适配器 整洁架构的落地总结 Pre DDD - 软件退化原因及案例分析 DDD - 如何运用 DDD 进行软件设计 DDD - 如何运用 DDD 进行数据库设计 DDD - 服务、实体与值对象的两种设计思路…