高等数学笔记(上下)

目录

  • 不定积分
  • 定积分
  • 微分方程
    • 线性微分方程解的结构
    • 常系数齐次线性微分方程
    • 常系数齐次线性微分方程特解的求法
  • 计算机解法

不定积分

第一类换元积分法:灵感来自于复合函数的求导,利用中间变量替换得到复合函数的积分法:设 f ( u ) f(u) f(u)具有原函数, u = φ ( x ) u=\varphi(x) u=φ(x)可导,则有换元公式
∫ f [ φ ( x ) ] φ ′ ( x ) d x = [ ∫ f ( u ) d u ] u = φ ( x ) \int f[\varphi(x)]\varphi'(x)dx=[\int f(u)du]_{u=\varphi(x)} f[φ(x)]φ(x)dx=[f(u)du]u=φ(x)
∫ 2 cos ⁡ 2 x d x = ∫ cos ⁡ 2 x ( 2 x ) ′ d x ( 令 u = 2 x ) = sin ⁡ 2 x + C \int 2\cos 2xdx=\int \cos 2x(2x)'dx(令u=2x)=\sin 2x+C 2cos2xdx=cos2x(2x)dx(u=2x)=sin2x+C
∫ 2 x e x 2 d x = ∫ e x 2 ( x 2 ) ′ d x = e x 2 + C \int 2xe^{x^2}dx=\int e^{x^2}(x^2)'dx=e^{x^2}+C 2xex2dx=ex2(x2)dx=ex2+C
第二类换元积分法: 设 x = ψ ( t ) x=\psi(t) x=ψ(t)是单调的可导函数,并且 ψ ′ ( t ) ≠ 0 \psi'(t)\ne 0 ψ(t)=0. 又设 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)]\psi'(t) f[ψ(t)]ψ(t)具有原函数,则有换元公式
∫ f ( x ) d x = [ ∫ f ( ψ ( t ) ψ ′ ( t ) d t ] t = ψ − 1 ( x ) \int f(x)dx=\left[\int f(\psi(t)\psi'(t)dt\right]_{t=\psi^{-1}(x)} f(x)dx=[f(ψ(t)ψ(t)dt]t=ψ1(x)
这种情况其实很难一眼直观看出来,三角函数相关的积分比较常见。
f ( x ) = a 2 − x 2 d x = a 2 cos ⁡ 2 t ∣ d t ( 令 x = a sin ⁡ t , − π 2 < t < π 2 ) = a 2 t + sin ⁡ t cos ⁡ t 2 + C = a 2 arcsin ⁡ x a + x a 2 − x 2 2 + C ( 将 t = arcsin ⁡ x a 带入 ) \begin{aligned} f(x)&=\sqrt{a^2-x^2}dx\\ &=a^2\cos^2 t|dt\ (令x=a\sin t, -\frac{\pi}{2}<t<\frac{\pi}{2})\\ &=\frac{a^2t+\sin t\cos t}{2}+C\\ &=\frac{a^2\arcsin \frac{x}{a}+x\sqrt{a^2-x^2}}{2}+C(将t=\arcsin \frac{x}{a}带入) \end{aligned} f(x)=a2x2 dx=a2cos2tdt (x=asint,2π<t<2π)=2a2t+sintcost+C=2a2arcsinax+xa2x2 +C(t=arcsinax带入)
分部积分法:来源于两个函数乘积的导数计算公式。设函数 u = u ( x ) , v = v ( x ) u=u(x), v=v(x) u=u(x),v=v(x)具有连续导数,则 ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv,移项并求积分得到:
∫ u v ′ d x = u v − ∫ u ′ v d x \int uv'dx=uv-\int u'vdx uvdx=uvuvdx
也即 ∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu udv=uvvdu
∫ x cos ⁡ x d x = x sin ⁡ x − ∫ sin ⁡ x d x = x sin ⁡ x + cos ⁡ x + C ( 其中 u = x , v = sin ⁡ x ) \int x\cos xdx=x\sin x-\int \sin xdx=x\sin x+\cos x+C(其中u=x,v=\sin x) xcosxdx=xsinxsinxdx=xsinx+cosx+C(其中u=x,v=sinx)
通常来讲,希望取原函数的函数 u u u的导数具有更简单的形式,从而 ∫ u ′ v d x \int u'vdx uvdx具有更简单的形式。
积分示例
多项式积分
f ( x ) = x x 2 − x + 1 ∫ f ( x ) d x = ∫ 1 2 2 x − 1 x 2 − x + 1 + 1 2 1 x 2 − x + 1 d x = ∫ 1 2 1 x 2 − x + 1 d ( x 2 − x + 1 ) + ∫ 1 2 1 ( x − 1 2 ) 2 + 3 4 d x = 1 2 l n ∣ x 2 − x + 1 ∣ + 1 3 a r c t a n 2 3 ( x − 1 2 ) + C \begin{aligned} f(x) &= \frac {x}{x^2-x+1}\\ \int f(x)dx&=\int \frac{1}{2}\frac{2x-1}{x^2-x+1}+\frac{1}{2}\frac{1}{x^2-x+1}dx\\ &=\int\frac 1 2\frac{1}{x^2-x+1}d(x^2-x+1)+\int\frac{1}{2}\frac{1}{(x-\frac{1}{2})^2+\frac 3 4}dx\\ &=\frac 1 2 ln|x^2-x+1|+\frac 1 {\sqrt{3}}arctan\frac 2{\sqrt{3}}(x-\frac 1 2)+C \end{aligned} f(x)f(x)dx=x2x+1x=21x2x+12x1+21x2x+11dx=21x2x+11d(x2x+1)+21(x21)2+431dx=21lnx2x+1∣+3 1arctan3 2(x21)+C

万能公式
∫ c s c x d x = ∫ 1 s i n x d x = ∫ 1 2 s i n x 2 c o s x 2 d x = ∫ s i n 2 x 2 + c o s 2 x 2 2 s i n x 2 c o s x 2 d x = ∫ t a n 2 x 2 + 1 2 t a n x 2 d x 令 t = t a n x 2 ,则 x = 2 a r c t a n t , ∫ c s c x d x = ∫ t 2 + 1 2 t d ( 2 a r c t a n t ) = ∫ 1 t d t = l n ∣ t ∣ + C = l n ∣ t a n x 2 ∣ + C \begin{aligned} \int csc xdx&=\int \frac{1}{sinx}dx\\ &=\int\frac{1}{2sin\frac{x}{2}cos\frac{x}{2}}dx\\ &=\int\frac{sin^2\frac{x}{2}+cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}dx\\ &=\int\frac{tan^2\frac{x}{2}+1}{2tan\frac{x}{2}}dx\\ \end{aligned}\\ 令t= tan\frac{x}{2},则x =2arctan t,\\ \begin{aligned} \int csc xdx&=\int\frac{t^2+1}{2t}d(2arctant)\\ &=\int\frac{1}{t}dt\\ &=ln|t|+C\\ &=ln|tan\frac{x}{2}|+C \end{aligned}\\ cscxdx=sinx1dx=2sin2xcos2x1dx=2sin2xcos2xsin22x+cos22xdx=2tan2xtan22x+1dxt=tan2x,则x=2arctantcscxdx=2tt2+1d(2arctant)=t1dt=lnt+C=lntan2x+C
万能公式(三角函数转成 t a n x 2 tan\frac{x}{2} tan2x的多项式)也没那么万能,复杂多项式也不好求积分。
复数范围内积分
∫ 1 1 + x 2 d x = a r c t a n x + C 上式是通过 a r c t a n x 的导数推导出来。然而根据多项式求积分方法 ∫ 1 1 + x 2 d x = ∫ 1 ( x + i ) ( x − i ) d x = i 2 ∫ 1 x + i − 1 x − i d x = i 2 l n ( x + i x − i ) + C 两个结果相去甚远。但是其物理含义上,又是一致的。调整中间过程,可得 ∫ 1 1 + x 2 d x = ∫ 1 ( x + i ) ( x − i ) d x = 1 2 l n ( 1 + x i 1 − x i ) + C = 1 2 l n ( e 1 + x 2 a r c t a n x e − 1 + x 2 a r c t a n x ) + C = 1 2 ( 2 a r c t a n x ) + C \int \frac{1}{1+x^2}dx=arctanx+C\\ 上式是通过arctan x的导数推导出来。 然而根据多项式求积分方法\\ \begin{aligned} \int\frac{1}{1+x^2}dx&=\int\frac{1}{(x+i)(x-i)}dx\\ &=\frac{i}{2}\int\frac{1}{x+i}-\frac{1}{x-i}dx\\ &=\frac{i}{2}ln\left(\frac{x+i}{x-i}\right)+C \end{aligned}\\ 两个结果相去甚远。但是其物理含义上,又是一致的。调整中间过程,可得\\ \begin{aligned} \int\frac{1}{1+x^2}dx&=\int\frac{1}{(x+i)(x-i)}dx\\ &=\frac{1}{2}ln\left(\frac{1+xi}{1-xi}\right)+C\\ &=\frac{1}{2}ln\left(\frac{e^{{\sqrt{1+x^2}arctanx}}}{e^{-\sqrt{1+x^2}arctanx}}\right)+C\\ &=\frac{1}{2}\left(2arctanx\right)+C \end{aligned}\\ 1+x21dx=arctanx+C上式是通过arctanx的导数推导出来。然而根据多项式求积分方法1+x21dx=(x+i)(xi)1dx=2ix+i1xi1dx=2iln(xix+i)+C两个结果相去甚远。但是其物理含义上,又是一致的。调整中间过程,可得1+x21dx=(x+i)(xi)1dx=21ln(1xi1+xi)+C=21ln(e1+x2 arctanxe1+x2 arctanx)+C=21(2arctanx)+C

定积分

众所周知,可以使用矩形(将圆弧使用平行于x轴横线来拟合)、梯形(将圆弧使用小块的连线来拟合)、辛普森法(将圆弧使用抛物线来拟合,估计在辛普森时代就已经知道了直线和抛物线围成图形面积的计算公式)求曲线和坐标轴围成的图形的面积,那么这么做是有误差的,难道误差就不管了吗?课本上并没有这个讨论,实际上,误差是更高阶无穷小,对误差进行一次积分的结果仍是无穷小,当 Δ x → 0 \Delta x\to 0 Δx0时,值为0.
在这里插入图片描述

我们来说明一下这个问题,对于 x i , x i + 1 和 f ( x ) x_i,x_{i+1}和f(x) xi,xi+1f(x)围成的图形面积 S i S_{i} Si,其中矩形的面积为 S m i S_{mi} Smi,曲线和矩形围成的面积为 S r i S_{ri} Sri,有 S i = S m i + S r i S_{i}=S_{mi}+S_{ri} Si=Smi+Sri. 假设 f ( x ) 在 [ x i , x i + 1 ) f(x)在[x_i,x_{i+1}) f(x)[xi,xi+1)上,斜率的最大值和最小值分别是 k m a x 和 k m i n k_{max}和k_{min} kmaxkmin S r i S_{ri} Sri面积小于矩形和最大斜率直线围成的三角形面积,即 S r i < ( x i + 1 − x i ) ( x i + 1 − x i ) k m a x / 2 = k m a x Δ x 2 / 2 S_{ri}<(x_{i+1}-x_{i})(x_{i+1}-x_{i})k_{max}/2=k_{max}\Delta x^2/2 Sri<(xi+1xi)(xi+1xi)kmax/2=kmaxΔx2/2
S = lim ⁡ Δ x i → 0 ∑ Δ x i → 0 n S i = ∑ Δ x i → 0 n ( S m i + S r i ) = lim ⁡ Δ x i → 0 ∑ Δ x i → 0 n ( f ( x i ) Δ x i + k m a x Δ x 2 / 2 ) = ∫ a b f ( x i ) d x + ∫ a b k m a x / 2 d 2 x = ∫ a b f ( x i ) d x \begin{aligned} S&=\lim_{\Delta x_i\to 0}\sum_{\Delta x_{i}\to 0}^nS_i=\sum_{\Delta x_{i}\to 0}^n(S_{mi}+S_{ri})\\ &=\lim_{\Delta x_i\to 0}\sum_{\Delta x_{i}\to 0}^n(f(x_i)\Delta x_i+k_{max}\Delta x^2/2)\\ &=\int_a^bf(x_i)dx+\int_a^bk_{max}/2\ d^2x\\ &=\int_a^bf(x_i)dx \end{aligned} S=Δxi0limΔxi0nSi=Δxi0n(Smi+Sri)=Δxi0limΔxi0n(f(xi)Δxi+kmaxΔx2/2)=abf(xi)dx+abkmax/2 d2x=abf(xi)dx
使用不同的方法求面积,进行同样小间隔的划分,能取得不同精度的原因是:它们的误差 S r i S_{ri} Sri Δ x i \Delta x_i Δxi的不同阶数的无穷小,矩形、梯形、抛物线都是 Δ x i \Delta x_i Δxi的一阶无穷小,矩形误差是二阶,梯形误差是三阶,辛普森误差是四阶。如果存在一种划分,误差是 S m i S_{mi} Smi对于 Δ x i \Delta x_i Δxi的同阶无穷小,则使用这种划分得到的面积和真实值相差一个常数。
含有瑕点的瑕积分不能直接通过原函数的积分上下限相减得到,必须根据瑕点分段求积分。
Q: Δ x → 0 时,弦长和弧长的差为什么是更高阶无穷小? \Delta x\to 0时,弦长和弧长的差为什么是更高阶无穷小? Δx0时,弦长和弧长的差为什么是更高阶无穷小?

微分方程

能使微分方程恒等的函数叫做微分方程的解;如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。

线性微分方程解的结构

对于二阶齐次线性微分方程: y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y''+P(x)y'+Q(x)y=0 y′′+P(x)y+Q(x)y=0
如果函数 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是方程的两个解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)是方程的解,其中 C 1 , C 2 C_1, C_2 C1,C2为任意常数。如果 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)的两个线性无关的特解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)是方程的通解。
而对于二阶非齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y''+P(x)y'+Q(x)y=f(x) y′′+P(x)y+Q(x)y=f(x),如果 y ∗ y^* y是他的一个特解,Y(x)是其对应的齐次方程的通解,则 y = Y ( x ) + y ∗ ( x ) y=Y(x)+y^*(x) y=Y(x)+y(x)是二阶非齐次线性微分方程的通解。

常系数齐次线性微分方程

二阶常系数齐次线性微分方程通解:
在这里插入图片描述
特征方程的根和解的关系
在这里插入图片描述

常系数齐次线性微分方程特解的求法

对于f(x)的两种常见形式,有如下经验:
(1) f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda x}P_m(x) f(x)=eλxPm(x),其中 λ \lambda λ是常数, P m P_m Pm是m阶多项式。
其特解形式为 y ∗ = x k R m ( x ) e λ x y^*=x^kR_m(x)e^{\lambda x} y=xkRm(x)eλx. k k k可以按照 λ \lambda λ是方程的根的重数取 0 , 1 , 2 , . . . 0, 1, 2, ... 0,1,2,...
(2) f ( x ) = e λ x ( P l ( x ) cos ⁡ ω x + Q n ( x ) sin ⁡ ω x ) f(x)=e^{\lambda x}(P_l(x)\cos\omega x+Q_n(x)\sin \omega x) f(x)=eλx(Pl(x)cosωx+Qn(x)sinωx),其特解形式为 y ∗ = x k e λ x [ R m ( 1 ) ( x ) cos ⁡ ω x + R m ( 2 ) ( x ) sin ⁡ ω x ] y^*=x^ke^{\lambda x}[R_m^{(1)}(x)\cos\omega x+R_m^{(2)}(x)\sin\omega x] y=xkeλx[Rm(1)(x)cosωx+Rm(2)(x)sinωx],k可按 λ + ω i \lambda+\omega i λ+ωi是方程特征根的重数取 0 , 1 , . . . 0, 1, ... 0,1,...
以上两种情况可以使用欧拉公式合并下:
对于 f ( x ) = e ( λ + ω i ) x P m ( x ) f(x)=e^{(\lambda+\omega i)x}P_m(x) f(x)=e(λ+ωi)xPm(x),其特解为 y ∗ = x k R m ( x ) e ( λ + ω i ) x y^*=x^kR_m(x)e^{(\lambda+\omega i) x} y=xkRm(x)e(λ+ωi)x
因为常系数齐次线性微分方程的通解导致方程左边恒为0,实际上就是求y使得经过左侧方程运算之后能得到方程右边的函数。根据经验可以知道其特解应该有相对固定的形式,故可以使用待定系数法来确定系数。教材上为了通用给了一些例子,但是过于刻板了。
举个例子: y ′ ′ − 2 y ′ − 3 y = 3 x + 1 y''-2y'-3y=3x+1 y′′2y3y=3x+1的特解,教材给的解法是带入通用公式,但其实大可不必,可以看做是:一个函数的二阶导数、一阶导数和本身的一个线性组合是 3 x + 1 3x+1 3x+1,求这个函数。可以推出这个函数至多是个三阶多项式,设 y ∗ = a x 3 + b x 2 + c x + d y^*=ax^3+bx^2+cx+d y=ax3+bx2+cx+d,求其一阶、二阶导数,带入微分方程,对比系数求得 a = 0 , b = 0 , c = − 1 , d = 1 / 3 a=0,b=0,c=-1,d=1/3 a=0,b=0,c=1,d=1/3

计算机解法

sympy是个符号计算库,在诸多方面不完善,但是对于日常的辅助计算,已经非常足够了。

import sympy as sp
sp.init_session() # 导入sp相关基本变量 x, y, z; i, j, k(Integer); f, g(Function)
f.assumptions0 # 展示f的假设; Function
sinc(pi/6).evalf(6) # 求出数值解,保留6位有效数字
p = Piecewise((0,x<-1),(x**2,x<=1),(0,True)) # 分段函数
ff = 1/(x**4+1) 
int_ff = Integral(ff, x)
int_ff.doit()
# 上述等价于 integrate(ff, x)
ff.subs(x**2, t) # 换元
ff = x + y + 4 
ff.subs({x:3,y:t,4:1}) # 替换,部分求和
ff = sp.exp(x**y)
ff.diff(x,x,y) # 对x求2次偏导,再对y求1次偏导
ff.diff(x,2,y,3) # 对x求2次偏导,再对y求3次偏导
ff.apart() #部分分式展开
ff.expand() # 因式展开
ff.factor() # 因式分解
ff.series(x, 10) # 泰勒展开(洛朗展开)
ff.series(x,y,10) # 二阶泰勒展开
ff.simplify() # 启发式化简
diffeq = [sympy.Eq(f(x).diff(x, x) - f(x), sympy.sin(x)), sympy.Eq(g(x).diff(x), 0)]
res = sympy.dsolve(diffeq, [f(x), g(x)], ics={f(0): 1, f(x).diff(x).subs(x, 0): 3}) # 指定初值,求解微分方程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/56352.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

五分钟了解GPT 模型背后的原理是什么?为什么 GPT 模型能生成有意义的文本?为什么 GPT 模型不会做简单的数学题?为什么有人担心 GPT 模型可能会危害人类?

五分钟了解GPT 模型背后的原理是什么&#xff1f;为什么 GPT 模型能生成有意义的文本&#xff1f;为什么 GPT 模型不会做简单的数学题&#xff1f;为什么有人担心 GPT 模型可能会危害人类&#xff1f; 0. 导读1. 为什么 GPT 模型能生成有意义的文本&#xff1f;2. 为什么 GPT 模…

图灵、图灵机和图灵测试

关注&#xff1a;灰质&#xff0c;有趣有料的AI技术分享 说到人工智能就不得不提到图灵&#xff0c;大家现在手头使用的智能手机、计算机都可以说是一种图灵机&#xff0c;即通过对输入进行计算得到输出的机器&#xff0c;图灵最早给出了这种机器形式化的定义和理论证明&#x…

2023年的深度学习入门指南(15) - 大模型的幻觉

2023年的深度学习入门指南(15) - 大模型的幻觉 大模型的能力最另人惊讶的&#xff0c;一个是强大的能力&#xff0c;另一个就是时不时一本正经地胡说八道。如果你用的是小一点的模型&#xff0c;可能还见过输出循环内容之类的情况。我们将这种生成不良内容的现象称为幻觉-hall…

a*算法代码 python,astar算法 python

这篇文章主要介绍了a*算法代码 python&#xff0c;具有一定借鉴价值&#xff0c;需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获&#xff0c;下面让小编带着大家一起了解一下。 1、python哪个版本opencv可以直接调用sift 这几天继续在看Lowe大神的SIFT神作&#xff…

GPT-2 面试题

简介 1、GPT-2 是什么&#xff1f;它是基于什么模型的&#xff1f; GPT-2 是一种人工智能的大型语言模型&#xff0c;由 OpenAI 在2019年提出。它是基于变压器&#xff08;Transformer&#xff09;模型的&#xff0c;使用了自注意力&#xff08;Self-Attention&#xff09;机…

最新闲鱼数据采集软件【2019年4月更新】

闲鱼采集软件可以采集商品标题、成色、用户名、地区、价格、链接等&#xff01;无需登录&#xff0c;无屏蔽&#xff01; 2019年3月初旧的接口全部不能用了&#xff0c;新的接口比较稀缺哦&#xff1b; 转载于:https://www.cnblogs.com/xtfnpgy/p/10778344.html

api接口—闲鱼搜索的数据

api接口&#xff0c;闲鱼搜索接口的数据 数据展示&#xff1a;

闲鱼APP爬虫

写在前面&#xff1a;实现闲鱼APP的特定关键字商品检索 实现思路&#xff1a;首先想到使用此前用到的appium驱动app实现数据获取和订单生成&#xff0c;而后通过app抓包分析获取接口 1.appium实现 首先是搭建环境&#xff0c;此前进行工作时&#xff0c;搭建过环境&#xff…

闲鱼上哪些商品抢手?Python 分析后告诉你

点击上方“AirPython”&#xff0c;选择“置顶公众号” 第一时间获取 Python 技术干货&#xff01; 阅读文本大概需要 10 分钟。 1 目 标 场 景 经常看到有朋友在闲鱼卖些小东西又或是自己擅长的一些技能&#xff0c;都能为他们带来不错的 睡后收入。 闲鱼上大量的商品&#xf…

向消息延迟说bybye:闲鱼消息及时到达方案(详细)

背景 IM消息作为闲鱼用户重要的交易咨询工具&#xff0c;核心目标有两点&#xff0c;第一是保证用户的消息不丢失&#xff0c;第二是保证用户的消息及时送达接收方。IM消息根据消息的接收方设备是否在线&#xff0c;分为离线和在线推送&#xff0c;数据显示目前闲鱼每天有超过一…

java爬取闲鱼商品信息(一)

闲鱼真是一个很神奇的地方&#xff0c; 能让我等学生狗不用花很多钱就能体验科技的乐趣&#xff0c;当然&#xff0c;前提是别翻车。 好了&#xff0c;这当然是题外话&#xff0c;这阵子总结了自己学习的一些技能&#xff0c;就写一个对闲鱼的数据抓取来练练手。 预计达到的目…

网络爬虫淘宝api,获得淘宝app商品详情原数据

item_get_app-获得淘宝app商品详情原数据 注册测试 请求参数 请求参数&#xff1a;num_iid520813250866 参数说明&#xff1a;num_iid:淘宝商品ID 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameStr…

闲鱼搜索相关性——体验与效率平衡的背后

背景 闲鱼搜索是闲鱼APP最大的成交场景入口&#xff0c; 成交归因中搜索占一半以上&#xff0c;所以提高成交效率是工程和算法迭代优化的主要目标&#xff0c;然而只以效率为最终的衡量标准不但会影响搜索的质量阻碍成交&#xff0c;还会恶化整个平台的长期生态建设无法成长&am…

闲鱼唤端的背后

背景 众所周知&#xff0c;想要DAU稳步上升&#xff0c;端外引流是一个必不可少的手段&#xff0c;常见的引流方式有&#xff1a;广告投放、分享回流、流量互换等&#xff0c;而他们也有着一个共同的技术问题&#xff0c;就是唤端&#xff0c;本文着重分享一下唤端的相关知识以…

闲鱼最新选品技巧,快速帮你找到爆款!

在星球里面&#xff0c;每天可以获得一些数据&#xff0c;主要是闲鱼热销品&#xff0c;稳定品类&#xff0c;还有一些三方的工具。 户外最近是个热品类&#xff0c;基本很多爆款都是从这里产生的&#xff0c;从前段时间分享的帐篷&#xff0c;板凳&#xff0c;烧烤架&#xff…

闲鱼商品理解数据分析平台——龙宫

引言 闲鱼是一个以C2C为主的平台&#xff0c;区别于B端的用户&#xff0c;C端卖家在发布商品时更倾向于图描述的轻发布模式&#xff0c;对于补充商品的结构化信息往往执行力和专业程度都不高&#xff0c;这为我们的商品理解带来了很大的困难。为了能够在发布侧获得更多的商品结…

闲鱼API接口,如何获取原生数据

闲鱼平台API&#xff0c;item_app 获得闲鱼原生数据 num_iid:闲鱼商品ID 点击获取key和secret* 当你有了账号时候点到测试页面&#xff0c;下面是我测试的结果 返回参数 Result Object: --------------------------------------- {"item": {"all_result&q…

闲鱼榜单数据

昨天有个客户给我看了这个页面&#xff0c;感觉挺有意思的&#xff1a;闲鱼榜单。 系统集成了各个行业&#xff0c;还推荐了用户可能感兴趣的行业的关键词&#xff0c;然后将行业内的卖家做一个排行。 比如潮玩行业的排名就是这样的&#xff1a; 然后就临时做了个接口&#xff…

闲鱼消息发展回顾

引言 闲鱼消息系统经过几代开发的建设&#xff0c;目前稳定的支撑亿级消息体量。在消息系统建设过程中&#xff0c;我们经历了从简单到复杂&#xff0c;从困扰到破局&#xff0c;每一次的技术改变都是为了更好的解决当下业务面临的问题。“忆昔午桥桥上饮&#xff0c;坐中多是豪…

电商搜索里都有啥?详解闲鱼搜索系统(长文)

搜索是电商平台的核心流量入口&#xff0c;承载着平台主要的成交引导、意图收敛、活动投放。一个稳定、高效、可扩展的搜索系统是电商平台得以生存发展的基石。本文探讨如何构建完善的商品搜索系统&#xff0c; 并根据闲鱼二手交易的差异化特性介绍闲鱼搜索系统的时效性优化。 …