一劳永逸 维基百科公式不显示怎么办?
- 注册1个wiki账号,
- 参数设置,
- 显示选项卡,最后的PNG图片点上;
成功;
- 有人说改http,为https协议就可以,但是我的本来就是https协议,同样显示不了图片,https://en.wikipedia.org/wiki/Cholesky_decomposition -
2 用Latex源+浏览器插件
1 上述图片,不选png图片,选第二个 Latex源
2 chrom是Math Anywhere,一键转换;很powerful
推荐勾选beta版本,测试功能 翻译很给力,中文wiki和英文的资料不是一个量级,但看英文有时候又很痛苦。
3 懒得写latex公式的一条捷径,借鉴wiki!
不想注册账号? 拷贝wiki原文,放入latex解析功能的文档中;比如CSDN ( 前 后 空 格 全 部 替 换 掉 ) ; 如 下 : ( 或 者 前 面 装 m a t h a n y w h e r e 插 件 时 候 , 点 击 关 掉 , 拷 贝 , 即 可 ) A R i c i a n f a d i n g c h a n n e l c a n b e d e s c r i b e d b y t w o p a r a m e t e r s : 前后空格全部替换掉);如下: (或者前面装math anywhere插件时候,点击关掉,拷贝,即可) A Rician fading channel can be described by two parameters: 前后空格全部替换掉);如下:(或者前面装mathanywhere插件时候,点击关掉,拷贝,即可)ARicianfadingchannelcanbedescribedbytwoparameters:K a n d and and\Omega . [ 1 ] .[1] .[1]K i s t h e r a t i o b e t w e e n t h e p o w e r i n t h e d i r e c t p a t h a n d t h e p o w e r i n t h e o t h e r , s c a t t e r e d , p a t h s . [ 2 ] is the ratio between the power in the direct path and the power in the other, scattered, paths.[2] istheratiobetweenthepowerinthedirectpathandthepowerintheother,scattered,paths.[2]\Omega i s t h e t o t a l p o w e r f r o m b o t h p a t h s ( is the total power from both paths ( isthetotalpowerfrombothpaths(\Omega =\nu ^{2}+2\sigma ^{2}$), and acts as a scaling factor to the distribution.
The received signal amplitude (not the received signal power) R R Ris then Rice distributed with parameters ν 2 = K 1 + K Ω \nu ^{2}={\frac {K}{1+K}}\Omega ν2=1+KKΩand σ 2 = Ω 2 ( 1 + K ) \sigma ^{2}={\frac {\Omega }{2(1+K)}} σ2=2(1+K)Ω.[3] The resulting PDF then is:
f ( x ) = 2 ( K + 1 ) x Ω exp ( − K − ( K + 1 ) x 2 Ω ) I 0 ( 2 K ( K + 1 ) Ω x ) , f(x)={\frac {2(K+1)x}{\Omega }}\exp \left(-K-{\frac {(K+1)x^{2}}{\Omega }}\right)I_{0}\left(2{\sqrt {\frac {K(K+1)}{\Omega }}}x\right), f(x)=Ω2(K+1)xexp(−K−Ω(K+1)x2)I0(2ΩK(K+1)x),
where I 0 ( ⋅ ) I_{0}(\cdot ) I0(⋅)is the 0th order modified Bessel function of the first kind.
latex写论文的小伙伴有福了,果断抄抄,高大上 糙猛快,既能装逼又能深入理解数学大厦;