探究ChatGPT与GPT-4的缺陷不足,揭示大预言LLM模型的局限性——没有完美的工具

目录

  • ChatGPT与GPT-4的缺陷不足——任何工具都不是万能的
    • 1. 引言
    • 2. 事实性错误
      • 2.1 问题示例
      • 2.2 原因分析
      • 2.3 解决方法
    • 3. 实时更新
      • 3.1 问题示例
      • 3.2 原因分析
      • 3.3 解决方法
    • 4. 总结
  • 参考资料
  • 其它资料下载

在这里插入图片描述

ChatGPT与GPT-4的缺陷不足——任何工具都不是万能的

1. 引言

  2022 年末 ChatGPT 的横空出世,在整个自然语言处理乃至人工智能领域都掀起了一阵海啸。自席卷全球以来便引起各行各业空前的热度,数亿用户震惊于 ChatGPT 的强大智能,感慨机器智能的飞速革新,研究背后的关键技术革新,然而这并不代表 ChatGPT 已然完美无瑕,从业者们则更多在思考当前 ChatGPT 亦或是预训练大模型存在哪些缺陷。 诚然 ChatGPT 的效果一度惊艳到众人,但仍未脱离深度预训练大模型的范式,更多是一个工程上的突破性进展,因此其缺点也并不难发现。本章主要指出其两大大明显缺点:生成文本包含事实错误,无法做到实时更新。至于其他一些能否做到类人思考等问题仍存在争议,本文就不作赘述。

  很多用户在使用中时常会碰到诸如事实错误这些问题,对于铺天盖地的炒作,很多不明就里的外行发出了“就这?”的疑问。实际上,ChatGPT 乃至正在推出的 GPT-4 以及未来的 GPT-5 等等,是近几十年人工智能研究范式的集大成者;当我们了解了神经网络的发展历程,了解了大模型的百花齐放,了解了从 GPT、GPT-2、BERT、GPT-3 的日新月异及其背后的大公司的争相角逐,再看看 ChatGPT 的飞跃式进步,就会觉得这项技术是人工智能发展史上无可非议的里程碑式成就,这种宏观意义已经远远无需拘泥于是否答对某个问题了。

  本文介绍 ChatGPT 的一些缺点,并非是为了“挑刺”或者对 ChatGPT 被捧得神乎其神的能力进行抬杠,而是为了让读者对这项技术有更立体的认识,不要被媒体一些流量标题所“迷惑”,客观认识当前最先进人工智能距离人类智能的差距;同时也是给想要从事自然语言处理研究的同学指出一些方向,让大家明白,革命尚未成功,同志仍需努力。

2. 事实性错误

2.1 问题示例

  作为当前人工智能产品的巅峰代表,ChatGPT 并不是永远都能那么“睿智”;尽管在 一些高难度问题上展现了超越人类的水准,然而对于一些老幼皆知的简单问题,ChatGPT 也往往会给出一些离谱至极的回答,一本正经的胡说八道,让人汗颜,也难怪大家会发出“就这”之类的感慨。如下图所示:
在这里插入图片描述
在这里插入图片描述

  这种事实性错误的存在无疑增加了应用落地的风险,尤其对医学,金融等非闲聊场景,轻则造成经济损失,重则威胁生命安全,因此消除对话模型中的事实错误成为了工业界和学术界的共同需求。

扩展:在 NLP 学术界,这种事实性错误一般统称为“幻觉”(Hallucination),顾名思义,该术语最早用于图像合成等领域,直到后来描述诸如图像检测时检测到虚假或错误目标等现象,才沿用至自然语言生成 (NLG) 任务,指模型生成自然流畅,语法正确但实际上毫无意义且包含虚假信息即事实错误的文本,以假乱真,就像人类产生的幻觉一样。

2.2 原因分析

  对 ChatGPT 之类的语言模型本身而言,在海量的文本数据上训练后,主要学到的知 识包含语言学知识和事实性知识(或称为世界知识)两类,语言学知识是为了能生成语法正确,自然流畅的文本,大部分经过处理的训练数据都是严格文法正确的,对于大模型来说,学习语言知识并非难事,而事实性知识则主要为实体之间的关联,相对而言复杂的多,即使对人类而言,也无法学习全部的事实知识。

  语言模型中的先验知识都来自于训练语料,用于训练语言模型的大数据语料库在收集时难免会包含一些错误的信息,这些错误知识都会被学习,存储在模型参数中,相关研究表明模型生成文本时会优先考虑自身参数化的知识,所以更倾向生成错误内容,而具体的生成过程仍是一个黑盒模型,很难逐个分析错误来源,也就造成生成任务中大量事实错误。

  相较其他自然语言生成任务,构建 ChatGPT 这种对话模型需要根据用户话语和对话 历史生成流畅连贯,且满足用户对话需求的合理回复。对话模型可以简单用以下因果图来表示:

在这里插入图片描述

  生成的回复 Y Y Y 由对话上下文 X X X 和语言模型里的先验知识 K K K 共同决定。在对话模型研究中,描述这些事实错误有个更通用的术语——称为“不一致”,一般可分为两种:第一种是事实不一致,就是生成回复 Y Y Y 与世界知识 K K K 相悖;另一种是对话历史不一致,一般来自于历史信息 X X X 的遗忘,与已生成回复相矛盾,以及在人设对话中人设信息会发生变化的现象,在多轮对话中,这种问题很常见。

2.3 解决方法

  根据前文分析,针对两种不一致问题需要找到相对应的方法。关于上下文不一致,由于当前所用的大模型能够接受很长的输入,这个问题造成的影响不大;而另一种事实不一致则相对很难解决,造成事实错误的首要因素是训练数据,那么构造干净的数据集进行去噪显然是一条可行的方法。由于预训练数据多为网上收集的句子,一般都需要提前过滤、修改语法、解决指代不明或事实错误,确保语言模型能学习到事实准确的知识,另外也可以用 Wikipedia 这样的知识库或其他三元组表示的知识来对语言模型的进行知识增强, 这些数据都是公认的包含世界知识的准确数据,对于降低干扰有很大帮助。

  数据方法涉及到人工构造,也就意味着成本较高,所以学术上更加关注使用其他方法,对模型架构、训练或解码推断进行优化,近年来相关研究也是层出不穷,在知识对话中,模型幻觉最大来源是外部知识选择不正确,因此用更强的检索模型搜索知识,返回更加有用的知识,也是消除对话回复幻觉的有效途径之一。此前发布的 ChatGPT 并不具备检索能力,其模型内部的隐式知识已然非常强大,一旦可以进行检索,结合网络中海量的数据,就可以做到实时学习,并更新模型内部过期的知识,这对模型效果的进一步提升也是相当可观的。

  当前对话模型更多关注在开放域场景,合理的回复往往不唯一,这意味着在训练阶段很难制作标签,同时在推理时模型也比较容易“放飞自我”,生成千奇百怪的回复结果,其中难免调用一些错误的知识。针对这种“一对多”的场景,很多研究致力于探索对话模型的可控生成,通过添加一些控制因素,使生成文本满足一定的约束。提示学习(Prompt Learning)本身就是一种在输入上加入可控因素从而引导正确的生成,这已经成了最新流行的范式;另外在解码阶段,也可以适当调整策略对生成的多条候选回复结果重新排序,尽可能选择出包含目标词汇的回复结果,控制生成内容。

3. 实时更新

3.1 问题示例

  关于 ChatGPT 时效性的问题,也在使用中司空见惯了,去年发布的 ChatGPT 只更新至2021年9月之前的信息,虽然 ChatGPT 加了检测机制对回答不了的问题直接“摊牌”(图3),但在人类“诱导”下,还是会忍不住一本正经的胡说八道(图4),这就涉及到时效性的问题了。

在这里插入图片描述
在这里插入图片描述

3.2 原因分析

  正如前文所分析,语言模型的信息都来自于训练数据,经过训练后这些知识会以参数化的形式存储在模型中,在往后的使用中都是基于已学习的知识来交互,因此模型本身并不会学习到新知识,在某一轮对话中通过给出适当的实时提示也许会展示出拥有学习新知识的能力,一旦重新开启对话将历史遗忘,ChatGPT 立即会返回最本真的状态。正如 ChatGPT 自身所言:

在这里插入图片描述

  那么对 ChatGPT 进行实时参数更新呢?这就涉及到另一个计算成本的问题了。深度学习目前朝着大模型大数据的方向发展已成必然趋势,甚至大模型涌现能力还会激发研究者们继续“疯狂氪金”堆参数;如今各大公司纷纷推出自己动辄便数千亿级参数量的模型,所用数据更是无法统计,尽管语言模型并非监督训练,但数据过滤,人工反馈等阶段还是需要高昂的人力成本;这样超大模型加海量数据的组合,每次训练都需要耗费数百万美元,用数千台 GPU 来完成,即使后续更新时并不需要从头训练,但花费依旧不菲,并不是一个可持续性的策略,没点财力的公司,是根本养不起的。

3.3 解决方法

  针对 ChatGPT 这种超大模型的实时更新问题。首先最直接的方法就是降低微调更新数据时的成本,由于预训练过程中已经学到大量语言学知识和其他先验世界知识,所以我们可以使用一些参数高效的方法只更新部分参数来学习新知识,此前研究表明,文本的语言学知识多存储在模型的低层网络,所以在微调更新时可以冻结中低层的模型参数,从而加速学习。

  ChatGPT 不能实时更新,是因为当前的深度学习范式在结束训练后就是一个静态的模型了,而人类则是终生都在动态学习,所以我们也希望能赋予它“活到老,学到老”的觉悟。那么我们是否可以让 ChatGPT 学习使用各种 API 的能力,自行处理数据然后自我迭代更新,实现闭环式学习达到时效性的目的呢?微软所推出的 new bing 搜索引擎,以对话形式精准查询用户的需求,实现了对话模型与海量网络信息的联动;ChatGPT 并不是搜索引擎,但可以和搜索引擎结合对查询做优化,或许会颠覆整个互联网的搜索模式, 而 ChatGPT 本身也就具备了访问这些最新数据的能力,这也许是未来大模型的新赛道。

4. 总结

  21 世纪一定是属于人工智能的时代,如果说深度学习引起学术界 AI 研究的热度, ChatGPT 的问世则无疑推向第一个小高潮,但简单了解过其原理后就会发现,这项技术并没有想象中的人类智慧那样复杂,更遑论毁灭人类的能力了,我们应当理性看待这一技术,不需要过度神化吹捧,也没必要过分苛责,在真正实现通用人工智能的路上仍然任重而道远。

参考资料

ChatGPT的不是万能的

其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/60187.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网页版直播和聊天室

序言 话说上一回,我说到了直播和聊天室,使用的是原生实现的。然而对我来说这太简单了,不足以体现我技术的优越性。下面开启我的装逼之旅。 效果 1.截图 2.视频 关键看游客模式,登录提醒,跳转登录,发送…

chatgpt赋能python:Python打开总闪退怎么办

Python打开总闪退怎么办 如果你从事或者熟悉Python编程,那么你肯定有遇到过打开Python总是闪退的情况,这让你倍感烦恼,不知道该怎么办。在这篇文章中,我们将会讨论Python打开总闪退的原因和一些修复方法。 问题原因 Python打开…

chatgpt赋能python:如何升级你的Python到最新版本

如何升级你的Python到最新版本 Python作为一种强大的编程语言,拥有广泛的用途,从网站开发到数据科学,都可以使用它来实现。然而,Python不断更新,每个新版本都带来了新的功能和改进,因此升级Python到最新版…

人工智能发展到GPT4经历了什么,从专家系统到机器学习再到深度学习,从大模型到现在的GPT4

大家好,我是微学AI,今天给大家讲一下人工智能的发展,从专家系统到机器学习再到深度学习,从大模型到现在的GPT4,讲这个的目的是让每个人都懂得人工智能,每个人都懂得人工智能的发展,未来人工智能…

调用百度文心AI作画API实现中文-图像跨模态生成

作者介绍 乔冠华,女,西安工程大学电子信息学院,2020级硕士研究生,张宏伟人工智能课题组。 研究方向:机器视觉与人工智能。 电子邮件:1078914066qq.com 一.文心AI作画API介绍 1. 文心AI作画 文…

AI绘画调用OpenAI-api接口【人工智能里的未来之城】:4 座未来派塔楼,天桥上覆盖着茂密的树叶,数字艺术

OpenAI绘画数字艺术是一种利用人工智能算法生成数字艺术的技术。该技术使用了一种称为GAN(Generative Adversarial Networks,生成对抗网络)的深度学习模型,这种模型由两个神经网络组成:生成器和判别器。 生成器的作用是生成新的数字艺术作品,它从随机噪声中生成图像,并…

集多个AI绘画开源模型于一体的工作台#invokeAI使用测评

原文:集多个AI绘画开源模型于一体的工作台#invokeAI使用测评-技术圈 当AI绘画模型和平台越来越多,你是否想使用统一美观的界面来使用你所有的AI绘画模型?invokeAI——这个精致的WebUI工具可以帮助你创建一个统一美观的工作环境: …

AI绘画升温、AI写作降温,AIGC玩“变脸”

配图来自Canva可画 自柯洁在“围棋人机大战”中惜败AlphaGo后,AI再次上演打败艺术家的戏码,AIGC(人工智能自主生成内容)时代真的要来了吗? 据了解,在今年科罗拉多州博览会艺术竞赛中,一名叫艾…

我迟早被这些AI绘画笑死...

点击下方卡片,关注“CVer”公众号 AI/CV重磅干货,第一时间送达 点击进入—>CV微信技术交流群 詹士 发自 凹非寺转载自:量子位(QbitAI) AI绘画,你没事吧? 狗主人直接变身狗爸爸,被…

今年很火的AI绘画怎么玩

1.前言 2022年绝对可以说是AIGC元年,从google搜索的趋势来看,在2022年AI绘画及AI生成艺术的搜索量激增。 AI绘画在这一年的爆发一个很重要的原因就是 Stable Diffusion 的开源,这也来不开这几年 Diffusion Model 扩散模型在这几年里的迅猛发…

国产AI作画神器火了,更懂中文,竟然还能做周边!

金磊 萧箫 发自 凹非寺量子位 | 公众号 QbitAI 家人们,听说了吗? 最近在“一句话生成画作”这个圈子里,又一个AI工具悄然火起来了。 不是你以为的Disco Diffusion、DALLE,再或者Imagen…… 而是全圈子都在讲中国话的那种。 瞧&…

争议不断的AI绘画,靠这个成为了顶流?

今年以来,AIGC迅速崛起。 所谓AIGC,即AI-Generated Content,指的是利用人工智能来生成内容,被认为是继专业产出内容(PGC)、用户产出内容(UGC)后的新型内容创作方式。不久前掀起热议的…

最时髦的AI画画,一文包教包会

最时髦的AI画画,一文包教包会 大概半年前,AI 绘画工具 Disco Diffusion 从 Text-to-Image 开发社区和设计行业,火到了普通用户的视野中。即便它界面简陋,满屏英文和代码,也“劝退”不了人们。因为对那些没有任何美术功…

有了AI智能绘画,我也可以成为绘画大师——全球最大规模中文跨模态生成模型ERNIE-ViLG

对于绘画一窍不通的我,也喜欢看动漫,看到一些绝美的画,何尝不会感叹,要是我也会画画就好了,现在终于有机会帮我实现这个想法了,无意间看到了AI的一个新应用,最近热度还挺高的AI绘画,…

我迟早被这些AI绘画笑死

詹士 发自 凹非寺量子位 | 公众号 QbitAI AI绘画,你没事吧? 狗主人直接变身狗爸爸,被顶上APP首页: 纯欲风女孩变成了纯欲风猴子…… 下方网友评价「当真是二次猿模型」: 甚至,还有结婚照男主角变成墙上大头…

AI绘画是什么?人工智能到底会不会代替真人

随着科技的不断进步以及人工智能的飞速发展,AI渗透各行各业的方方面面,甚至经常会出现这样一个话题:人工智能到底会不会代替真人?那么,今天我们就来聊一聊ai绘画领域的那些事。 首先我们来说一说什么是AI绘画。AI绘画&…

AI绘画是艺术还是技术?AI绘画会让插画师集体失业?

今年以来,AI绘画的讨论热潮此起彼伏,过一段时间就会引起争议和恐慌。 就在近日,日本推出一款名为mimic的AI绘画软件,被日本绘画圈集体声讨,许多画师公开禁止AI绘画;恰巧最近美国艺术圈里关于AI绘画也发生了…

AI绘画神器Stable Diffusion的疯狂与危险

本文来源 AI前线 作者 | JAMES VINCENT 译者 | 核子可乐 策划 | 刘燕 最近几周,一款名为 Stable Diffusion 的文本到图像程序横空出世,瞬间颠覆了一切。Stable Diffusion 将无过滤图像生成的门槛下放到历史最低。它一边被 AI 艺术界所称道&#xff0c…

AI绘画爆火,人工智能会取代艺术吗

我们都知道,人工智能正在给艺术领域带来一场革命。从AI自动绘画到AI插画,再到AI创作,越来越多的人在感受着人工智能技术的进步。但是我们也发现了一个问题,就是人们担心人工智能会取代人类的工作。那么,我们到底该如何…

AI绘画火爆,到现在还只是冰山一角?AIGC掀起当代新艺术浪潮

前言: hello,大家好我是Dream。近日,各大社交平台掀起了一股“AI绘图”风潮,很多同学朋友纷纷在社交平台上晒出了属于自己的AI照片,一时间AI相关话题热度高涨。那对于AI绘画以及开启AI内容创作新时代的昆仑万维你究竟了…