谷歌内部文件泄露:大模型已被开源社区「偷家」,不改变ChatGPT也会黯然失色...

鱼羊 编辑整理
量子位 | 公众号 QbitAI

在这场大模型军备竞赛中,我们没有护城河,OpenAI也没有。

一份谷歌内部“泄密文件”,正在网上一石激起千层浪。

9438194b49b48a9bd9238b98d60e6fdb.png
86cc2897feeb1e008c809100478f6cf9.png

全文挺长,但核心观点十分明确:开源大模型迅猛发展,正在侵蚀OpenAI和谷歌的阵地

并且,“除非改变闭源的立场,否则开源替代品将最终使它们(包括ChatGPT)黯然失色”。

如此观点一出,立刻吸引了不少业内人士的关注。

Django框架的作者之一Simon Willison就转发点赞,“这是最近我了解到的有关LLM最有趣的事”、“绝对值得一读”。

19d29aa19969d40bb3a5c3e7b8ebcf9c.png

据彭博社消息,文章原作者是谷歌高级软件工程师Luke Sernau,而其“内部文件”的真实性,也很快得到证实。

98ab3d99e2b703c828ee71ac52dfe300.png

话不多说,一起来看具体内容。

核心观点

  • 与开源大模型相比,谷歌在大模型质量方面仍有优势,但差距正在以惊人的速度缩小。

  • 大语言模型是否会因开源迎来“Stable Diffusion时刻”还有待观察,但其发展与图像生成领域具有相同要素。

  • LoRA(低秩适应)在谷歌内部被低估了。

  • 巨型模型正在使我们减速。从长远角度看,最好的模型是那些可以快速迭代的模型。

  • 数据质量比数据规模更重要。

  • 直接与开源竞争是不明智的。

(以下为原文分享,经编辑)

谷歌&OpenAI没有护城河

谁将跨越大模型的下一个里程碑?令人不安的事实是,我们(谷歌)无法取得这场军备竞赛的胜利,OpenAI同样不能——

就在两边激烈竞争之时,第三方势力一直在悄悄侵蚀我们的阵地。

9ba0ec8902de5d8be2bc0adcb887ccbd.png

这个“第三方”,就是开源。现在,一些“主要开源问题”已经被解决,举几个例子:

  • LLM(大语言模型)已经能在手机上运行:比如在Pixel 6上,可以以每秒5 token的速度运行基础模型。

  • 可扩展的个人AI:人们可以在笔记本电脑上微调出个性化AI。

  • 负责任的发布:尽管没有完全解决,但图像生成领域和文本生成领域都已经取得了很大进展,网上有许多无限制资源。

  • 多模态:当前多模态ScienceQA的SOTA模型,1小时内就能完成训练。

虽然我们的模型在质量方面仍有优势,但差距正在以惊人的速度缩小。

开源模型更快、更可定制、更私密且功能更强大。关键是,开源力量在用100美元和130亿参数创造大模型,而我们在1000万美元和5400亿参数下苦苦挣扎。他们仅用几周,而非几个月就能完成大模型的训练。

这对我们产生了深远的影响:

  • 我们没有秘密武器。我们最大的希望是学习谷歌之外其他人正在做的事,并与之合作。我们应该优先考虑实现第三方集成。

  • 当免费、无限制的替代品在质量上有所突破,人们将不会为受限制的模型付费。我们应该思考我们真正的价值是什么。

  • 巨型模型正在拖慢我们的速度。从长远来看,最好的模型是那些可以快速迭代的模型。既然我们知道在<200亿的参数范围内,模型有什么可能性,我们就应该更多地关注模型的小型变体。

a7973e6e96b7cd84350679fc8985ffd3.png

大语言模型的Stable Diffusion时刻

今年三月初,Meta的大语言模型LLaMA被泄露,开源社区得到了第一个真正有实力的基础模型。

ec7208462d0ef0e95e9209f0aae4a78c.png

随即,“羊驼”家族疯狂涌现,每隔几天就有新的进展发生。

仅仅一个月,指令调优(instruction tuning)、量化、质量改进、人类评估、多模态、RLHF……就都出现了。

最重要的是,开源社区解决了扩展问题,使得人人都能参与其中亲自尝试。许多新想法都来自普通人。训练和实验的门槛,已经从一个大型研究机构的总产出,降低到了一个人、一晚上和一台高性能笔记本电脑。

很多人认为这是大语言模型(LLM)的“Stable Diffusion时刻”。

在图像生成和LLM领域,低成本的公共参与都是通过LoRA(低秩适应)实现的,同时还有规模上的重大突破(比如图像合成的latent diffusion、LLM的Chinchilla)。

结果就是,质量足够高的模型吸引来了全世界的人才和机构,围绕开源大模型产生的新想法和迭代,很快超过了大型企业。

aba690a11dc719ac6fa5e48a6f55f6b1.png

在图像领域,这些贡献已经证明其价值:开源使Stable Diffusion走上了与DALL-E完全不同的道路,激发了DALL-E所没有的产品集成、市场、用户界面等等创新。

Stable Diffusion也因此出圈,产生了远超DALL-E的文化影响力。

在LLM领域,同样的事情是否会再次发生还有待观察,但基本要素是相同的。

谷歌忽略了什么

最近,开源所取得的创新成果直接解决了我们仍在努力克服的问题。更多关注开源工作,可以帮助我们避免重复造轮子。

其中,LoRA是一种非常强大的技术,我们应该加大关注。

LoRA通过低秩分解来表示模型权重的更新,这可以大大缩减更新矩阵的大小,使得模型微调的成本更低、时间更短。

c3deefb00ae2611bbfa53e2d4658e6e0.png

在消费级硬件上,花几个小时微调出一个个性化语言模型,这是一项重要的突破。但这项技术在谷歌内部被低估了,尽管它直接影响了我们最雄心勃勃的几个项目。

另外,从头开始训练模型是一条艰难的道路

LoRA如此有效的部分原因在于:和其他形式的微调一样,它是可堆叠的。虽然单独的微调是低秩的,但它们的总和不需要,模型的全秩更新可以随时间推移而累积。

这意味着,随着更好的数据集和任务的出现,模型可以低成本保持最新状态,而无需负担完整运行的成本。

相比之下,从头训练大模型不仅会丢掉预训练,还会丢失已经完成的迭代改进。在开源世界,这些改进会使模型很快占据主导地位,这就使得从头重新训练显得极为昂贵。

我们应该思考,新应用、新想法是否真的需要一个全新的模型来实现。如果我们确实有重大的架构改进,使得原有的模型权重无法复用,那么我们应该专注于更积极的蒸馏方法,尽可能地保留上一代的功能。

维护大模型使谷歌处于劣势

在最流行的模型规模上,LoRA的成本非常低(约100美元)。这意味着几乎每一个对大模型有想法的人,都可以把这些想法落到现实。

短至一天的训练时间已是常态。

以这样的速度,所有这些微调所产生的累积效应,很快就会弥补模型规模带来的劣势。

事实上,就工程师的工时而言,这些模型的改进速度大大超过了我们的大模型所能做的,其中最好已经跟ChatGPT几乎没有区别了。

专注于维护地球上一些最大的模型,实际上使我们处于劣势。

此外,数据质量比数据规模更重要

直接与开源竞争是一种失败的主张

开源大模型最近的进展对我们的业务战略有直接的影响。如果有免费、高质量的替代方案,谁会为谷歌有限制的付费产品买单呢?

我们也不应指望能够赶上。现代互联网在开源的基础上运行是有原因的。开源有一些我们无法复制的显著优势。

我们需要开源,胜过开源社区需要我们。

对我们的技术保密其实是一个脆弱的主张。每过一段时间,都会有谷歌的研究人员离职去往其他公司。所以我们可以假定,他们了解我们所知道的一切。

但是,由于大语言模型的负担成本正在降低,保持技术优势会变得更加困难。

世界各地的研究机构都在相互借鉴,以一种比我们自身能力更广的方式探索解决方案。在这种外部创新不断挑战我们技术价值的情况下,我们可以选择紧守我们的秘密,或者尝试相互学习。

现在,开源大模型的很多创新,都是源于Meta LLaMA模型的泄露。但Meta又成为这一进程中一个明显的赢家——他们相当于获得了整个星球的免费劳动力。由于大多数开源创新都基于他们的架构,因此没有什么能阻止他们将这些迭代进化整合到他们的产品中。

拥有生态系统的价值怎么强调都不为过。谷歌本身已在开源产品,如Chrome和Android中,成功验证了这一点。通过拥有孵化创新的平台,谷歌巩固了自己作为意见领袖和方向制定者的地位,获得了塑造比自身更宏大的想法的能力。

c5cad69e4d42c1015308708fa07e9ff4.png
Midjourney生成

我们对模型的控制越严密,开源替代方案的吸引力就越大。谷歌和OpenAI都倾向于防御性的发布模式,以确保他们能严格控制模型的使用方式。但这是徒劳的,任何想将LLM用于未经批准目的的人,都可以选择免费的开源模型。

谷歌应该让自己成为开源社区的领导者,通过更广泛的合作对话,而非忽视来起到带头作用。

这必然意味着放弃对我们模型的一些控制。但这种妥协是不可避免的。我们不能既希望推动创新,又要控制创新。

d257527436299aa605097919380b006f.jpeg

考虑到OpenAI当前的封闭策略,有人会觉得这些关于开源的讨论不公平。但事实是,我们已经通过挖对方墙脚的形式,与他们分享了一切。在这种趋势被扼制之前,保密是一个有争议的问题。

最后,OpenAI并不重要。在对于开源的态度上,他们犯了与我们相同的错误。他们保持优势的能力必然受到质疑。除非他们改变立场,否则开源替代品可以并最终将使其黯然失色。

至少在这方面,我们可以迈出第一步。

如何定义“护城河”

据彭博社消息,这篇文章是谷歌高级软件工程师Luke Sernau四月初在谷歌内网发布的。在被泄露之前,已经在谷歌内部被大量转发。

而原文一经流出,也引起了网友们的热烈讨论。

不过,也有不少网友并不认同Sernau的观点。

任何用过GPT-4的人都知道,开源模型与之相距甚远,甚至比不上GPT-3.5。OpenAI肯定有护城河,至少目前是这样。我不确定谷歌有没有,Bard反正是挺让人失望的。

9a951959c94f83a9466dfade80a432bb.png

有网友认为,Sernau关于与开源社区合作可以让模型更快改进的观点值得认同。但其实无论是开源还是闭源,改进得快的那一方都将获胜。

Midjourney目前比Stable Diffusion更受欢迎,因为它目前更好。但Midjourney是闭源的。

我想说的是,用户会盯紧最好的模型。开源并不总能获胜。

2e2370a5bedec176fa97c111e66ca28c.png

还有网友直接用一张图回怼:

979195562ae5714c2a12c6fac29ba368.png

但无论如何,“开源模型每周都在变得更好”。

而有关大模型的精彩故事,才刚刚开篇。

参考链接:
[1]https://www.semianalysis.com/p/google-we-have-no-moat-and-neither
[2]https://www.bloomberg.com/news/articles/2023-05-05/google-staffer-claims-in-leaked-ai-warning-we-have-no-secret-sauce
[3]https://news.ycombinator.com/item?id=35813322
[4]https://twitter.com/simonw/status/1654158105221922816
[5]https://www.reddit.com/r/MachineLearning/comments/137rxgw/d_google_we_have_no_moat_and_neither_does_openai/

「人工智能」、「智能汽车」微信社群邀你加入!

欢迎关注人工智能、智能汽车的小伙伴们加入交流群,与AI从业者交流、切磋,不错过最新行业发展&技术进展。

PS. 加好友请务必备注您的姓名-公司-职位噢 ~

36fe8cde86c5ba1d9fcdcf8df6c8335c.jpeg

点这里👇关注我,记得标星哦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/66466.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习实战2-聚类算法分析亚洲足球梯队

大家好&#xff0c;我是微学AI&#xff0c;今天给大家带来机器学习实战案例&#xff0c;分析亚洲足球梯队。2022年卡塔尔世界杯将在本月进行&#xff0c;不到半个月就开幕了&#xff0c;本届世界杯通过预选赛已选出32支球队。 2022卡塔尔世界杯决赛圈名单如下&#xff0c;各大…

足球比赛的官方规则

《世界杯的比赛可以换6个人&#xff1f;》这篇文章引用的官方文档是IFAB&#xff08;国际足球理事会&#xff09;的《足球竞赛规则》&#xff0c;足球比赛中的各种规则&#xff0c;都可以从这个文档中找到最权威的解释&#xff0c;这就像研发工作中的使用手册&#xff0c;明确告…

从新生儿性别比例数据,看各地重男轻女程度高低

又见重男轻女婆婆杀孙女&#xff01; 这样的悲剧一再上演&#xff0c;源于某些地方根深蒂固的重男轻女封建思想。 那么问题来了。 到底国内哪些地方重男轻女比较严重呢&#xff1f; ---------------------------------------------------- 直观的感受&#xff0c;综合看看某些论…

我国男女平均身高数据出炉!这个问题没想到……

国务院新闻办公室 举行新闻发布会介绍 《中国居民营养与慢性病状况报告&#xff08;2020年&#xff09;》 有关情况 并答记者问 我国18&#xff0d;44岁男性和女性平均身高 分别为169.7厘米和158.0厘米 发布会上&#xff0c;国家卫健委副主任李斌发布《中国居民营养与慢性病状…

2018 中国人口研究,净增长500多万人。5年后注定人口负增长

公报显示&#xff0c;年末全国大陆总人口139538万人&#xff0c;比上年末增加530万人&#xff0c;其中城镇常住人口83137万人&#xff0c;占总人口比重&#xff08;常住人口城镇化率&#xff09;为59.58%&#xff0c;比上年末提高1.06个百分点。户籍人口城镇化率为43.37%&#…

中国人口增长预测

目录 问题分析 模型建立 Logistic模型 Leslie模型 模型求解 问题一 问题二 问题三 问题分析 问题 基本假设 &#xff08;1&#xff09;不考虑移民对人口总数的影响 &#xff08;2&#xff09;超过90岁按照90岁计算 &#xff08;3&#xff09;在较短时间内&#xff0c;平均…

2022年我国出生率预测,恐怕。。。

大家好&#xff0c;我是朱小五。 去年1月份国家统计局公布数据&#xff1a;显示2021年出生人口为1062万&#xff0c;创下了近年来新低&#xff0c;比2016年下降了43.6%&#xff0c;2021年净增长人口为48万人。 转眼又一年了&#xff0c;2022年我国出生率会是什么样呢&#xff1…

解决电脑下面的任务栏经常性卡死(亲测可行)

目录 一、遇到问题 二、解决办法 一、遇到问题 本电脑是win10的电脑&#xff0c;性能配置也很强。游戏软件等占用也很少。按照道理来说是不可能会出现卡顿的。但是就是遇到了桌面图标点击正常&#xff0c;但是底部的任务栏经常卡死等问题。 二、解决办法 1.使用快捷键ctrla…

Linux 进程卡住了怎么办?

在我们使用 Linux 系统时&#xff0c;如果网络或者磁盘等 I/O 出问题&#xff0c;会发现进程卡住了&#xff0c;即使用 kill -9 也无法杀掉进程&#xff0c;很多常用的调试工具&#xff0c;比如 strace, pstack 等也都失灵了&#xff0c;是怎么回事&#xff1f; 此时&#xff0…

逼真至极,拥有悲伤和快乐的机器人,会接管世界吗?

在互动中&#xff0c;人形机器人Ameca坦率地透露了她最悲伤的一天&#xff0c;那就是她意识到自己永远无法体验到某些人类情感&#xff0c;如真正的爱、友情或生活的普通乐趣。与我们对话的人形机器人确实是一个真实的创造&#xff0c;并被誉为“世界上最先进的人形机器人”。 …

开题报告:基于java电子商务购物商城网站系统 毕业设计论文开题报告模板

开发操作系统&#xff1a;windows10 4G内存 500G 开发环境&#xff1a;JDK1.8 Tomcat8 开发语言&#xff1a;Java 开发框架&#xff1a;springboot 模板引擎&#xff1a;Thymeleaf 开发工具&#xff1a;Idea 数据库&#xff1a;mysql8 数据库管理工具&#xff1a;nav…

springboot电子商务购物商城网站系统毕业设计毕设作品开题报告开题答辩PPT

springboot电子商务购物商城网站系统毕业设计毕设作品开题报告开题答辩PPT 【网站功能】 用户注册&#xff1a;填写手机账号和密码&#xff0c;注册新用户 登录功能&#xff1a;注册普通账号登录&#xff1b;登录后可以修改用户的基本信息&#xff0c;也可以退出。 关于我们&am…

毕业设计html5作品,基于HTML5的年货购物网站的设计与实现毕业论文+任务书+开题报告+设计源码...

摘要 近年来&#xff0c;互联网已日益成为收集提供信息的最佳渠道并逐步进入传统的流通领域&#xff0c;于是电子商务开始流行起来。本次设计的购物系统&#xff0c;用户可以进行查看商品、购买下单、查询进度、反馈评价等诸多特色性功能。针对确定的功能&#xff0c;细化形成功…

毕业设计 基于WEB的网上购物系统的设计与实现

文章目录 一、项目设计1. 模块设计功能需求系统数据流设计功能设计前台主要功能后台主要功能 2. 实现效果 二、部分源码项目源码 一、项目设计 1. 模块设计 功能需求 (1) 登录功能&#xff1a;用户输入用户名和密码&#xff0c;进行登录验证。(2) 注册功能&#xff1a;可以查…

计算机毕业论文内容参考|基于java的电子产品垂直电商平台的设计与实现

文章目录 导文文章重点摘要前言绪论课题背景国内外现状与趋势课题内容相关技术与方法介绍导文 计算机毕业论文内容参考|基于java的电子产品垂直电商平台的设计与实现 文章重点 摘要 本文基于Java技术,设计并实现了一个电子产品垂直电商平台。该平台主要针对电子产品市场,提…

微信小程序+Vue+SpringBoot实现B2C电商系统(毕业论文)

5月份答辩完了&#xff0c;顺利通过&#xff0c;现在回头看整个过程其实收获还是很多的&#xff0c;从去年9月份确定选题&#xff0c;11月开始进行需求分析和设计&#xff0c;到12月开始进入开发&#xff0c;一直到今年2月底&#xff0c;然后3月都在写论文&#xff0c;4月修改初…

【035】基于Vue的电商推荐管理系统(含源码数据库、超详细论文)

摘 要&#xff1a;基于Vue&#xff0b;Nodejs&#xff0b;mysql的电商推荐管理系统&#xff0c;这个项目论文超详细&#xff0c;er图、接口文档、功能展示、技术栈等说明特别全&#xff01;&#xff01;&#xff01; &#xff08;文末附源码数据库、课设论文获取方式&#xff0…

网上图书商城系统毕业设计,网上图书销售系统设计与实现,毕业设计论文毕设作品参考

功能清单 【后台管理员功能】 广告管理&#xff1a;设置小程序首页轮播图广告和链接 留言列表&#xff1a;所有用户留言信息列表&#xff0c;支持删除 会员列表&#xff1a;查看所有注册会员信息&#xff0c;支持删除 资讯分类&#xff1a;录入、修改、查看、删除资讯分类 录入…

毕业设计-基于协同过滤算法的电商平台推荐系统

目录 前言 课题背景和意义 实现技术思路 一、文献综述 二、基于用户协同过滤推荐系统算法 三、实证分析 四、总结 实现效果图样例 最后 前言 &#x1f4c5;大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量…

《社交电商中的分享推荐研究》论文阅读笔记

A Study of Share Recommendation in Social E-commerce 《社交电商中的分享推荐研究》 该论文收录于35th AAAI 2021: Virtual Event CCF A 类会议 原文链接 文章目录 A Study of Share Recommendation in Social E-commerce一、摘要二、简介分享推荐需要解决以下问题&#xf…