Attention计算中的各个矩阵的维度都是如何一步步变化的?

在Transformer模型中,各个矩阵的维度变化是一个关键的过程,涉及到输入、编码器、解码器和输出等多个阶段。以下是详细的维度变化过程:

输入阶段

  • 输入序列:假设输入序列的长度为seq_len,每个单词或标记通过词嵌入(word embedding)转换为一个固定维度的向量,维度为d_model。因此,输入矩阵的维度为(seq_len, d_model)
  • 位置编码:位置编码(Positional Encoding)通常与词嵌入向量相加,以提供序列中每个单词的位置信息。位置编码的维度与词嵌入相同,即(seq_len, d_model)

编码器(Encoder)阶段

  • 多头注意力机制(Multi-Head Attention)

    • 查询(Q)、键(K)、值(V)矩阵:输入矩阵与权重矩阵相乘得到Q、K、V矩阵。假设每个头的维度为d_k(通常d_k = d_model / num_heads),则Q、K、V的维度为(seq_len, d_k)
    • 注意力计算:Q与K的转置相乘,得到一个注意力得分矩阵,维度为(seq_len, seq_len)。经过softmax处理后,再与V相乘,得到输出矩阵,维度为(seq_len, d_k)
    • 多头拼接:将所有头的输出拼接或平均,得到最终的输出矩阵,维度为(seq_len, d_model)
  • 前馈神经网络(Feed-Forward Network)

    • 输入矩阵经过两个线性变换和非线性激活函数,最终输出的维度保持为(seq_len, d_model)

解码器(Decoder)阶段

  • 掩码多头注意力机制(Masked Multi-Head Attention)

    • 类似于编码器中的多头注意力机制,但使用了掩码来防止解码器在生成时“偷看”未来的信息。输出矩阵的维度为(seq_len, d_model)
  • 编码器-解码器注意力机制

    • 解码器的查询(Q)与编码器的键(K)和值(V)进行注意力计算,输出矩阵的维度为(seq_len, d_model)

输出阶段

  • 线性层和Softmax
    • 解码器的输出经过一个线性层,将维度从(seq_len, d_model)转换为(seq_len, vocab_size),其中vocab_size是词汇表的大小。
    • 最后通过Softmax层,得到每个单词的概率分布,用于预测下一个单词。

这些维度变化确保了Transformer模型能够有效地处理序列数据,并在各个层之间传递和转换信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/665.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java项目之在线文档管理系统源码(springboot+mysql+vue+文档)

大家好我是风歌,曾担任某大厂java架构师,如今专注java毕设领域。今天要和大家聊的是一款基于springboot的在线文档管理系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 在线文档管理系统的主要使用者分为管…

学技术步骤,(tomcat举例)jar包api手写tomcat静态资源基础服务器

1.看有哪些包,能用本地离线的包就使用离线包 2.尽量不要使用配置文件(先不用),能用api就用api, 因为配置文件只是文本,其实要的只是配置文件里的参数, 这些参数最后肯定还是要给到这些api去处…

React中createRoot函数原理解读——Element对象与Fiber对象、FiberRootNode与HostRootNode

【2024最新版】React18 核心源码分析教程(全61集) Element对象与Fiber对象 在 React 中,Element 对象 和 Fiber 对象 是核心概念,用于实现 React 的高效渲染和更新机制。以下是它们的详细解读: 1. Element 对象 定…

如何用SQL语句来查询表或索引的行存/列存存储方式|OceanBase 用户问题集锦

一、问题背景 自OceanBase 4.3.0版本起,支持了列存引擎,允许表和索引以行存、纯列存或行列冗余的形式创建,且这些存储方式可以自由组合。除了使用 show create table命令来查看表和索引的存储类型外,也有用户询问如何通过SQL语句…

超完整Docker学习记录,Docker常用命令详解

前言 关于国内拉取不到docker镜像的问题,可以利用Github Action将需要的镜像转存到阿里云私有仓库,然后再通过阿里云私有仓库去拉取就可以了。 参考项目地址:使用Github Action将国外的Docker镜像转存到阿里云私有仓库 一、Docker简介 Do…

数据结构-排序课后题

今天我们来简单的说说关于排序的一些课后练习题. 对应的知识点博客: LINK. 目录 1. 每一单趟都能确定一个数字的最终位置的排序2. 根据序列变化确定排序方式3. 排序顺序对哪些排序效率影响不大?4. 对有序序列排序最费力的排序方式是什么?5. 对接近有序序列排序最快的排序方式…

MySQL 架构

MySQL架构 MySQL8.0服务器是由连接池、服务管理⼯具和公共组件、NoSQL接⼝、SQL接⼝、解析器、优化 器、缓存、存储引擎、⽂件系统组成。MySQL还为各种编程语⾔提供了⼀套⽤于外部程序访问服务器的连接器。整体架构图如下所⽰: MySQL Connectors:为使⽤…

【数据结构】二叉搜索树

目录 1. 二叉搜索树的概念 2. 二叉搜索树的性能分析 3.二叉搜索树的实现 3. 1.二叉搜索树的插入 3.2. 二叉搜索树的查找 3.3. 二叉搜索树的删除 3.4. 二叉搜索树的实现代码 4. 二叉搜索树key和key/value两种使用场景 4.1 key搜索场景: 4.2 key/value搜索场…

【C++】string的关系运算与比较分析

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯基础知识:C 中的 string 关系运算器1. 关系运算器概述2. 字符串比较的本质 💯代码解析与扩展代码例一:相等比较代码解析输出 代码例二&a…

高性能网络模式:Reactor 和 Proactor

Reactor Reactor 采用I/O多路复用监听事件,收到事件后,根据事件类型分配给某个进程/线程。 实际应用中用到的模型: 单 Reactor 单进程 单 Reactor 多线程 优点:能充分利用多核CPU性能。 缺点:存在多线程竞争共享资源…

有限元分析学习——Anasys Workbanch第一阶段笔记(10)桌子载荷案例分析_实际载荷与均布载荷的对比

目录 0 序言 1 桌子案例 2 模型简化 3 方案A 前处理 1)分析类型选择 2)材料加载 3)约束、载荷及接触 4)控制网格(网格大小需要根据结果不断调整) 初始计算结果 加密后计算结果 4 方案B、C 前处理 1)分析…

用HTML + CSS实现太极图

目录 一、效果图 二、实现思路 三、完整代码 四、总结 一、效果图 如图所示,太极图一半为黑色(代表阴),另一半为白色(代表阳)。这两部分相互环绕,形成一种流动的、旋转的感觉。 二、实现思…

【Rust自学】11.7. 按测试的名称运行测试

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 11.7.1. 按名称运行测试的子集 如果想要选择运行的测试,就将测试的名称(一个或多个)作为cargo test的…

标准应用 | 2025年网络安全服务成本度量实施参考

01 网络安全服务成本度量依据相关新变化 为了解决我国网络安全服务产业发展中面临的服务供需两方对于服务成本组成认知偏差较大、网络安全服务成本度量缺乏依据的问题,中国网络安全产业联盟(CCIA)组织北京赛西科技发展有限责任公司、北京安…

HAMi + prometheus-k8s + grafana实现vgpu虚拟化监控

最近长沙跑了半个多月,跟甲方客户对了下项目指标,许久没更新 回来后继续研究如何实现 grafana实现HAMi vgpu虚拟化监控,毕竟合同里写了需要体现gpu资源限制和算力共享以及体现算力卡资源共享监控 先说下为啥要用HAMi吧, 一个重要原…

某地武警海警总队建筑物自动化监测

1. 项目概述 该项目分布于三个不同的地级市,都是位于临海港口的码头,由中国武警海警总队驻扎,守卫人民安全。 1号建筑物自动化监测系统项目由一道伸缩缝划分为两个监测单元,建筑物为三层混合结构,采用350mm厚石墙、2…

负载均衡原理及算法

什么是负载均衡? 负载均衡 指的是将用户请求分摊到不同的服务器上处理,以提高系统整体的并发处理能力以及可靠性。负载均衡服务可以有由专门的软件或者硬件来完成,一般情况下,硬件的性能更好,软件的价格更便宜&#x…

Windows 下Mamba2 / Vim / Vmamba 环境安装问题记录及解决方法终极版(无需绕过triton)

导航 安装教程导航 Mamba 及 Vim 安装问题参看本人博客:Mamba 环境安装踩坑问题汇总及解决方法(初版)Linux 下Mamba 及 Vim 安装问题参看本人博客:Mamba 环境安装踩坑问题汇总及解决方法(重置版)Windows …

LLMs之VDB:LanceDB的简介、安装和使用方法、案例应用之详细攻略

LLMs之VDB:LanceDB的简介、安装和使用方法、案例应用之详细攻略 目录 LanceDB的简介 1、LanceDB的主要特性 2、为何选择 LanceDB? LanceDB的安装和使用方法 1、安装方法 Javascript/Typescript Python 2、使用方法 Javascript Python LanceDB…

《拉依达的嵌入式\驱动面试宝典》—计算机网络篇(二)

《拉依达的嵌入式\驱动面试宝典》—计算机网络篇(二) 你好,我是拉依达。 感谢所有阅读关注我的同学支持,目前博客累计阅读 27w,关注1.5w人。其中博客《最全Linux驱动开发全流程详细解析(持续更新)-CSDN博客》已经是 Linux驱动 相关内容搜索的推荐首位,感谢大家支持。 《…