自定义数据集使用框架的线性回归方法对其进行拟合

代码

import torch
import numpy as np
import torch.nn as nncriterion = nn.MSELoss()data = np.array([[-0.5, 7.7],[1.8, 98.5],[0.9, 57.8],[0.4, 39.2],[-1.4, -15.7],[-1.4, -37.3],[-1.8, -49.1],[1.5, 75.6],[0.4, 34.0],[0.8, 62.3]])x_data = data[:, 0]
y_data = data[:, 1]x_train = torch.tensor(x_data, dtype=torch.float32)
y_train = torch.tensor(y_data, dtype=torch.float32)model = nn.Sequential(nn.Linear(1, 1))optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epoch = 500
for n in range(1,epoch+1):y_prd = model(x_train.unsqueeze(1))loss = criterion(y_prd.squeeze(1), y_train)optimizer.zero_grad()loss.backward()optimizer.step()if n % 10 == 0 or n == 1:print(f'epoch: {n}, loss: {loss}')

运行结果:

epoch: 1, loss: 2957.510986328125
epoch: 10, loss: 1785.2095947265625
epoch: 20, loss: 1031.366455078125
epoch: 30, loss: 606.9622192382812
epoch: 40, loss: 366.8883361816406
epoch: 50, loss: 230.34017944335938
epoch: 60, loss: 152.19020080566406
epoch: 70, loss: 107.1496810913086
epoch: 80, loss: 80.98954772949219
epoch: 90, loss: 65.66667175292969
epoch: 100, loss: 56.6099967956543
epoch: 110, loss: 51.205726623535156
epoch: 120, loss: 47.949058532714844
epoch: 130, loss: 45.966827392578125
epoch: 140, loss: 44.74833297729492
epoch: 150, loss: 43.99201583862305
epoch: 160, loss: 43.51824188232422
epoch: 170, loss: 43.218894958496094
epoch: 180, loss: 43.02821731567383
epoch: 190, loss: 42.90589141845703
epoch: 200, loss: 42.82688903808594
epoch: 210, loss: 42.77559280395508
epoch: 220, loss: 42.74211120605469
epoch: 230, loss: 42.72018051147461
epoch: 240, loss: 42.705726623535156
epoch: 250, loss: 42.696205139160156
epoch: 260, loss: 42.68989181518555
epoch: 270, loss: 42.68572235107422
epoch: 280, loss: 42.68293380737305
epoch: 290, loss: 42.68109130859375
epoch: 300, loss: 42.67984390258789
epoch: 310, loss: 42.679046630859375
epoch: 320, loss: 42.678489685058594
epoch: 330, loss: 42.67811584472656
epoch: 340, loss: 42.67786407470703
epoch: 350, loss: 42.67770004272461
epoch: 360, loss: 42.677608489990234
epoch: 370, loss: 42.677520751953125
epoch: 380, loss: 42.67747116088867
epoch: 390, loss: 42.677452087402344
epoch: 400, loss: 42.67742156982422
epoch: 410, loss: 42.67741775512695
epoch: 420, loss: 42.67739486694336
epoch: 430, loss: 42.67738342285156
epoch: 440, loss: 42.67737579345703
epoch: 450, loss: 42.677391052246094
epoch: 460, loss: 42.67737579345703
epoch: 470, loss: 42.67738723754883
epoch: 480, loss: 42.67738342285156
epoch: 490, loss: 42.67738342285156
epoch: 500, loss: 42.67737579345703

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/7402.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(2)STM32 USB设备开发-USB虚拟串口

例程:STM32USBdevice: 基于STM32的USB设备例子程序 - Gitee.com 本篇为USB虚拟串口教程,没有知识,全是实操,按照步骤就能获得一个STM32的USB虚拟串口。本例子是在野火F103MINI开发板上验证的,如果代码中出现一些外设的…

K8S中的数据存储之基本存储

基本存储类型 EmptyDir 描述:当 Pod 被调度到节点上时,Kubernetes 会为 Pod 创建一个空目录,所有在该 Pod 中的容器都可以访问这个目录。特点: 生命周期与 Pod 绑定,Pod 删除时,数据也会丢失。适用于临时…

谈谈RTMP|RTSP播放器视频view垂直|水平反转和旋转设计

技术背景 我们在做RTMP|RTSP播放器的时候,有这样的技术诉求,有的摄像头出来的数据是有角度偏差的,比如“装倒了”,或者,图像存在上下或者左右反转,这时候,就需要播放器能做响应的处理&#xff…

自然语言处理——从原理、经典模型到应用

1. 概述 自然语言处理(Natural Language Processing,NLP)是一门借助计算机技术研究人类语言的科学,是人工智能领域的一个分支,旨在让计算机理解、生成和处理人类语言。其核心任务是将非结构化的自然语言转换为机器可以…

【MFC】C++所有控件随窗口大小全自动等比例缩放源码(控件内字体、列宽等未调整) 20250124

MFC界面全自动等比例缩放 1.在初始化里 枚举每个控件记录所有控件rect 2.在OnSize里,根据当前窗口和之前保存的窗口的宽高求比例x、y 3.枚举每个控件,根据比例x、y调整控件上下左右,并移动到新rect struct ControlInfo {CWnd* pControl;CRect original…

SkyWalking介绍

一款开源的系统性能监控工具(APM) 背景 在解决提报的IT性能问题时,由于缺乏系统性能监控运维的工具,导致问题排查非常困难,尤其是偶发的问题,无法进行问题复现还原,需要一套能实时监控线上系统性能的工具平台。 SkyWal…

Pyecharts之图表组合与布局优化

在数据可视化中,我们经常需要将多个图表组合在一起,以展示不同维度的数据或者进行对比分析。同时,合理的布局能够提升图表的可读性和用户体验。Pyecharts 提供了强大的组件和方法,让我们可以轻松实现图表的组合和布局优化。本篇将…

物业管理平台系统提升社区智能化服务效率与管理水平

内容概要 在现代社会中,物业管理平台系统的出现,为社区的智能化服务带来了革命性的变化。这种系统不仅仅是提升了工作效率,更是通过一系列智能化功能,根本性改变了物业管理的方式。比如,在广告位管理方面,…

Kafka 深入服务端 — 时间轮

Kafka中存在大量的延迟操作,比如延时生产、延时拉取和延时删除等。Kafka基于时间轮概念自定义实现了一个用于延时功能的定时器,来完成这些延迟操作。 1 时间轮 Kafka没有使用基于JDK自带的Timer或DelayQueue来实现延迟功能,因为它们的插入和…

Baklib如何推动企业知识管理的创新与转型探讨

内容概要 在当今快速发展的数字化时代,企业需要不断适应变化,以保持竞争优势。Baklib作为一款企业知识管理中台,扮演着推动数字化转型的重要角色。它通过提供一个集成的知识管理平台,帮助企业高效管理和共享内部及外部的知识资源…

日志收集Day005

1.filebeat的input类型之filestream实战案例: 在7.16版本中已经弃用log类型,之后需要使用filebeat,与log不同,filebeat的message无需设置就是顶级字段 1.1简单使用: filebeat.inputs: - type: filestreamenabled: truepaths:- /tmp/myfilestream01.lo…

【Rust自学】15.3. Deref trait Pt.2:隐式解引用转化与可变性

喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 15.3.1. 函数和方法的隐式解引用转化(Deref Coercion) 隐式解引用转化(Deref Coercion)是为…

【技巧】优雅的使用 pnpm+Monorepo 单体仓库构建一个高效、灵活的多项目架构

单体仓库(Monorepo)搭建指南:从零开始 单体仓库(Monorepo)是一种将多个相关项目集中管理在一个仓库中的开发模式。它可以帮助开发者共享代码、统一配置,并简化依赖管理。本文将通过实际代码示例&#xff0…

【MySQL — 数据库增删改查操作】深入解析MySQL的create insert 操作

数据库CRUD操作 1 CRUD简介 CURD是对数据库中的记录进行基本的增删改查操作: 2. Create 新增 语法 INSERT [INTO] table_name[(column [,column] ...)] VALUES(value_list)[,(value_list)] ... # value 后面的列的个数和类型,要和表结构匹配…

VSCode下EIDE插件开发STM32

VSCode下STM32开发环境搭建 本STM32教程使用vscode的EIDE插件的开发环境,完全免费,有管理代码文件的界面,不需要其它IDE。 视频教程见本人的 VSCodeEIDE开发STM32 安装EIDE插件 Embedded IDE 嵌入式IDE 这个插件可以帮我们管理代码文件&am…

electron打包客户端在rk3588上支持h265硬解

目录 前言 chromium是如何支持h265硬解 electron/chromium第一次编译 electron/chromium第二次编译 前言 我们的客户端程序是用electron打包的前端程序,其在rk3588主机上的linux环境运行。之前使用客户端查看h264编码的视频直播是没有问题的,但视频源…

An OpenGL Toolbox

3.An OpenGL Toolbox 声明:该代码来自:Computer Graphics Through OpenGL From Theory to Experiments,仅用作学习参考 3.1 Vertex Arrays and Their Drawing Commands 顶点数组及其绘制命令:将几何数据存储在一个位置&#xff0c…

Three城市引擎地图插件Geo-3d

一、简介 基于Three开发,为Three 3D场景提供GIS能力和城市底座渲染能力。支持Web墨卡托、WGS84、GCJ02等坐标系,支持坐标转换,支持影像、地形、geojson建筑、道路,植被等渲染。支持自定义主题。 二、效果 三、代码 //插件初始化…

侧边导航(Semi Design)

根据前几次的导航栏设计,从最简单的三行导航栏到后面响应式的导航栏,其实可以在这个的基础上慢慢优化,就可以得到一个日常使用设计的导航栏。设计步骤也和之前的类似。 一、实现步骤 1、先下载安装好npm install douyinfe/semi-icons 2、引…

【中间件快速入门】什么是Redis

现在后端开发会用到各种中间件,一不留神项目可能在哪天就要用到一个我们之前可能听过但是从来没接触过的中间件,这个时候对于开发人员来说,如果你不知道这个中间件的设计逻辑和使用方法,那在后面的开发和维护工作中可能就会比较吃…