归并排序——“数据结构与算法”

各位CSDN的uu们好呀,今天,小雅兰的内容仍然是数据结构与算法专栏的排序呀,下面,让我们进入归并排序的世界吧!!!


归并排序

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:

 

void _MergeSort(int* a, int begin, int end, int* tmp)
{if (begin >= end){return;}int mid = (begin + end) / 2;//[begin,mid] [mid+1,end]_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid + 1, end, tmp);//归并两个区间int begin1 = begin;int begin2 = mid + 1;int end1 = mid;int end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
//归并排序
void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);_MergeSort(a, 0, n - 1, tmp);free(tmp);
}

 

 测试一下归并排序:

void TestMergeSort()
{
    int a[] = { 2,1,4,3,6,5,7,9,8,10 };
    PrintArray(a, sizeof(a) / sizeof(a[0]));
    MergeSort(a, sizeof(a) / sizeof(a[0]));
    PrintArray(a, sizeof(a) / sizeof(a[0]));
}

 

归并排序的特性总结:

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)
  4. 稳定性:稳定

归并排序非递归

void MergeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc失败!!!");return;}int gap = 1;while (gap < n){int j = 0;for (int i = 0; i < n; i += gap){//每组的合并数据int begin1 = i;int end1 = i + gap - 1;int begin2 = i + gap;int end2 = i + 2 * gap - 1;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}}memcpy(a, tmp, sizeof(int) * n);gap *= 2;}free(tmp);
}

但是这个代码是有非常严重的越界问题的,只有有2的次方的数据的时候,才不会越界!!!

小雅兰在这里打印几组数据看得更加清楚:

 

 

void MergeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc失败!!!");return;}// 1  2  4 ....int gap = 1;while (gap < n){int j = 0;for (int i = 0; i < n; i += 2 * gap){// 每组的合并数据int begin1 = i;int end1 = i + gap - 1;int begin2 = i + gap;int end2 = i + 2 * gap - 1;printf("[%d,%d][%d,%d]\n", begin1, end1, begin2, end2);if (end1 >= n || begin2 >= n){break;}// 修正if (end2 >= n){end2 = n - 1;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}// 归并一组,拷贝一组memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));}printf("\n");gap *= 2;}free(tmp);
}

 这样修正一下就可以啦!!!

 

这个越界问题还有第二种解决方案:

void MergeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);// 1  2  4 ....int gap = 1;while (gap < n){int j = 0;for (int i = 0; i < n; i += 2 * gap){// 每组的合并数据int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;printf("修正前:[%d,%d][%d,%d]\n", begin1, end1, begin2, end2);if (end1 >= n){end1 = n - 1;// 不存在区间begin2 = n;end2 = n - 1;}else if (begin2 >= n){// 不存在区间begin2 = n;end2 = n - 1;}else if(end2 >= n){end2 = n - 1;}printf("修正后:[%d,%d][%d,%d]\n", begin1, end1, begin2, end2);while (begin1 <= end1 && begin2 <= end2){if (a[begin1] <= a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}}printf("\n");memcpy(a, tmp, sizeof(int) * n);gap *= 2;}free(tmp);
}

 

 


测试各种排序

// 测试排序的性能对比
void TestOP()
{srand(time(0));const int N = 1000000;int* a1 = (int*)malloc(sizeof(int) * N);int* a2 = (int*)malloc(sizeof(int) * N);int* a3 = (int*)malloc(sizeof(int) * N);int* a4 = (int*)malloc(sizeof(int) * N);int* a5 = (int*)malloc(sizeof(int) * N);int* a6 = (int*)malloc(sizeof(int) * N);int* a7 = (int*)malloc(sizeof(int) * N);for (int i = 0; i < N; ++i){a1[i] = rand();a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];}int begin1 = clock();InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();int begin3 = clock();SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a4, N);int end4 = clock();int begin5 = clock();QuickSort(a5, 0, N - 1);int end5 = clock();int begin6 = clock();MergeSort(a6, N);int end6 = clock();int begin7 = clock();BubbleSort(a7, N);int end7 = clock();printf("InsertSort:%d\n", end1 - begin1);printf("ShellSort:%d\n", end2 - begin2);printf("SelectSort:%d\n", end3 - begin3);printf("HeapSort:%d\n", end4 - begin4);printf("QuickSort:%d\n", end5 - begin5);printf("MergeSort:%d\n", end6 - begin6);printf("BubbleSort:%d\n", end7 - begin7);free(a1);free(a2);free(a3);free(a4);free(a5);free(a6);free(a7);
}

 

 

 

所有排序源代码:

Sort.h的内容:

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<stdbool.h>
#include<string.h>


void PrintArray(int* a, int n);


// 直接插入排序
void InsertSort(int* a, int n);

// 希尔排序
void ShellSort(int* a, int n);

// 直接选择排序
void SelectSort(int* a, int n);

// 堆排序
void AdjustDown(int* a, int n, int root);
void HeapSort(int* a, int n);

// 冒泡排序
void BubbleSort(int* a, int n);

//快速排序
int PartSort1(int* a, int left, int right);
int PartSort2(int* a, int left, int right);
int PartSort3(int* a, int left, int right);
void QuickSort(int* a, int begin, int end);

void QuickSortNonR(int* a, int begin, int end);

//归并排序
void MergeSort(int* a, int n);

void MergeSortNonR(int* a, int n);

 Sort.c的内容:

#include"Sort.h"
#include"Stack.h"
void PrintArray(int* a, int n)
{
    int i = 0;
    for (i = 0; i < n; i++)
    {
        printf("%d ", a[i]);
    }
    printf("\n");
}


//直接插入排序
void InsertSort(int* a, int n)
{
    int i = 0;
    for (i = 1; i < n; i++)
    {
        int end = i - 1;
        int tmp = a[i];
        while (end >= 0)
        {
            //插入的数据比原来的数据小
            if (a[end] > tmp)
            {
                a[end + 1] = a[end];
                --end;
            }
            else
            {
                break;
            }
        }
        a[end + 1] = tmp;
    }
}


//希尔排序
void ShellSort(int* a, int n)
{
    //1.gap>1,预排序
    //2.gap==1,直接插入排序
    int gap = n;
    while (gap > 1)
    {
        gap = gap / 3 + 1;
        //+1可以保证最后一次一定是1
        for (int i = 0; i < n - gap; i++)
        {
            int end = i;
            int tmp = a[end + gap];
            while (end >= 0)
            {
                if (a[end] > tmp)
                {
                    a[end + gap] = a[end];
                    end = end - gap;
                }
                else
                {
                    break;
                }
            }
            a[end + gap] = tmp;
        }
    }
}


//冒泡排序
void BubbleSort(int* a, int n)
{
    for (int j = 0; j < n; j++)
    {
        bool exchange = false;
        for (int i = 1; i < n - j; i++)
        {
            if (a[i - 1] > a[i])
            {
                int tmp = a[i];
                a[i] = a[i - 1];
                a[i - 1] = tmp;
                exchange = true;
            }
        }
        if (exchange == false)
        {
            break;
        }
    }
}


void Swap(int* a1, int* a2)
{
    int tmp = *a1;
    *a1 = *a2;
    *a2 = tmp;
}

//直接选择排序
void SelectSort(int* a, int n)
{
    int begin = 0;
    int end = n - 1;
    while (begin < end)
    {
        int maxi = begin;
        int mini = begin;
        for (int i = begin; i <= end; i++)
        {
            if (a[i] > a[maxi])
            {
                maxi = i;
            }
            if (a[i] < a[mini])
            {
                mini = i;
            }
        }
        Swap(&a[begin], &a[mini]);
        //如果maxi和begin重叠,修正一下即可
        if (begin ==maxi)
        {
            maxi = mini;
        }
        Swap(&a[end], &a[maxi]);
        ++begin;
        --end;
    }
}

//向下调整算法
void AdjustDown(int* a, int n, int parent)
{
    //默认左孩子小
    int child = parent * 2 + 1;
    while (child < n)//孩子在数组范围内
    {
        //选出左右孩子中大的那一个
        //有可能假设错了
        //左孩子不存在,一定没有右孩子——完全二叉树
        //左孩子存在,有可能没有右孩子
        if (child + 1 < n && a[child + 1] > a[child])
            //    右孩子存在            右孩子>左孩子
            //不能这么写 if (a[child + 1] > a[chid] && child + 1 < n )
            //这样写会有越界的风险 因为是先访问了数组中的元素 再去比较右孩子是否存在
        {
            ++child;
        }
        //child就是大的那个孩子
        //不关心到底是左孩子还是右孩子 
        if (a[child] > a[parent])
        {
            Swap(&a[child], &a[parent]);
            parent = child;
            child = parent * 2 + 1;//默认又算的是左孩子
        }
        else
        {
            break;
        }

    }
}
//堆排序
void HeapSort(int* a, int n)
{
    //建堆——向下调整建堆
    int i = 0;
    for (i = (n - 1 - 1) / 2; i >= 0; i--)
    {
        AdjustDown(a, n, i);
    }
    //升序——建大堆
    int end = n - 1;
    while (end > 0)
    {
        Swap(&a[0], &a[end]);
        AdjustDown(a, end, 0);
        --end;
    }
}

//三数取中
int GetMidIndex(int* a, int left, int right)
{
    int mid = (left + right) / 2;
    if (a[left] < a[mid])
    {
        if (a[mid] < a[right])
        {
            return mid;
        }
        else if (a[left] < a[right])
        {
            return right;
        }
        else
        {
            return left;
        }
    }
    else // a[left] > a[mid]
    {
        if (a[mid] > a[right])
        {
            return mid;
        }
        else if (a[left] > a[right])
        {
            return right;
        }
        else
        {
            return left;
        }
    }
}
// hoare
// [left, right]
int PartSort1(int* a, int left, int right)
{
    int midi = GetMidIndex(a, left, right);
    Swap(&a[left], &a[midi]);

    int keyi = left;
    while (left < right)
    {
        // 右边找小
        while (left < right && a[right] >= a[keyi])
        {
            --right;
        }

        // 左边找大
        while (left < right && a[left] <= a[keyi])
        {
            ++left;
        }

        Swap(&a[left], &a[right]);
    }

    Swap(&a[keyi], &a[left]);

    return left;
}


挖坑法
[left, right]
//int PartSort2(int* a, int left, int right)
//{
//    int midi = GetMidIndex(a, left, right);
//    Swap(&a[left], &a[midi]);
//
//    int key = a[left];
//    int hole = left;
//    while (left < right)
//    {
//        // 右边找小
//        while (left < right && a[right] >= key)
//        {
//            --right;
//        }
//
//        a[hole] = a[right];
//        hole = right;
//
//        // 左边找大
//        while (left < right && a[left] <= key)
//        {
//            ++left;
//        }
//
//        a[hole] = a[left];
//        hole = left;
//    }
//
//    a[hole] = key;
//
//    return hole;
//}
//
前后指针法
[left, right]
//int PartSort3(int* a, int left, int right)
//{
//    int midi = GetMidIndex(a, left, right);
//    Swap(&a[left], &a[midi]);
//
//    int prev = left;
//    int cur = left + 1;
//    int keyi = left;
//    while (cur <= right)
//    {
//        if (a[cur] < a[keyi] && ++prev != cur)
//        {
//            Swap(&a[prev], &a[cur]);
//        }
//
//        ++cur;
//    }
//
//    Swap(&a[prev], &a[keyi]);
//    keyi = prev;
//    return keyi;
//}
//快速排序
void QuickSort(int* a, int begin, int end)
{
    if (begin >= end)
    {
        return;
    }
    int keyi = PartSort1(a, begin, end);
    //[begin,keyi-1] keyi [keyi+1,end]
    QuickSort(a, begin, keyi - 1);
    QuickSort(a, keyi + 1, end);
}


//快速排序非递归
void QuickSortNonR(int* a, int begin, int end)
{
    Stack st;
    StackInit(&st);
    StackPush(&st, end);
    StackPush(&st, begin);

    while (!StackEmpty(&st))
    {
        int left = StackTop(&st);
        StackPop(&st);

        int right = StackTop(&st);
        StackPop(&st);

        int keyi = PartSort1(a, left, right);

        // [left, keyi-1] keyi [keyi+1, right]

        if (keyi + 1 < right)
        {
            StackPush(&st, right);
            StackPush(&st, keyi + 1);
        }

        if (left < keyi - 1)
        {
            StackPush(&st, keyi - 1);
            StackPush(&st, left);
        }
    }

    StackDestroy(&st);
}


void _MergeSort(int* a, int begin, int end, int* tmp)
{
    if (begin >= end)
    {
        return;
    }
    int mid = (begin + end) / 2;
    //[begin,mid] [mid+1,end]
    _MergeSort(a, begin, mid, tmp);
    _MergeSort(a, mid + 1, end, tmp);
    //归并两个区间
    int begin1 = begin;
    int begin2 = mid + 1;
    int end1 = mid;
    int end2 = end;
    int i = begin;
    while (begin1 <= end1 && begin2 <= end2)
    {
        if (a[begin1] < a[begin2])
        {
            tmp[i++] = a[begin1++];
        }
        else
        {
            tmp[i++] = a[begin2++];
        }
    }
    while (begin1 <= end1)
    {
        tmp[i++] = a[begin1++];
    }
    while (begin2 <= end2)
    {
        tmp[i++] = a[begin2++];
    }
    memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
//归并排序
void MergeSort(int* a, int n)
{
    int* tmp = (int*)malloc(sizeof(int) * n);
    if (tmp == NULL)
    {
        perror("malloc失败!!!");
        return;
    }
    _MergeSort(a, 0, n - 1, tmp);
    free(tmp);
}

//归并排序非递归
void MergeSortNonR(int* a, int n)
{
    int* tmp = (int*)malloc(sizeof(int) * n);

    // 1  2  4 ....
    int gap = 1;
    while (gap < n)
    {
        int j = 0;
        for (int i = 0; i < n; i += 2 * gap)
        {
            // 每组的合并数据
            int begin1 = i, end1 = i + gap - 1;
            int begin2 = i + gap, end2 = i + 2 * gap - 1;

            printf("修正前:[%d,%d][%d,%d]\n", begin1, end1, begin2, end2);

            if (end1 >= n)
            {
                end1 = n - 1;

                // 不存在区间
                begin2 = n;
                end2 = n - 1;
            }
            else if (begin2 >= n)
            {
                // 不存在区间
                begin2 = n;
                end2 = n - 1;
            }
            else if(end2 >= n)
            {
                end2 = n - 1;
            }

            printf("修正后:[%d,%d][%d,%d]\n", begin1, end1, begin2, end2);


            while (begin1 <= end1 && begin2 <= end2)
            {
                if (a[begin1] <= a[begin2])
                {
                    tmp[j++] = a[begin1++];
                }
                else
                {
                    tmp[j++] = a[begin2++];
                }
            }

            while (begin1 <= end1)
            {
                tmp[j++] = a[begin1++];
            }

            while (begin2 <= end2)
            {
                tmp[j++] = a[begin2++];
            }
        }
        printf("\n");

        memcpy(a, tmp, sizeof(int) * n);
        gap *= 2;
    }

    free(tmp);
}
//void MergeSortNonR(int* a, int n)
//{
//    int* tmp = (int*)malloc(sizeof(int) * n);
//    if (tmp == NULL)
//    {
//        perror("malloc失败!!!");
//        return;
//    }
//    // 1  2  4 ....
//    int gap = 1;
//    while (gap < n)
//    {
//        int j = 0;
//        for (int i = 0; i < n; i += 2 * gap)
//        {
//            // 每组的合并数据
//            int begin1 = i;
//            int end1 = i + gap - 1;
//            int begin2 = i + gap;
//            int end2 = i + 2 * gap - 1;
//
//            printf("[%d,%d][%d,%d]\n", begin1, end1, begin2, end2);
//
//            if (end1 >= n || begin2 >= n)
//            {
//                break;
//            }
//
//            // 修正
//            if (end2 >= n)
//            {
//                end2 = n - 1;
//            }
//
//            while (begin1 <= end1 && begin2 <= end2)
//            {
//                if (a[begin1] < a[begin2])
//                {
//                    tmp[j++] = a[begin1++];
//                }
//                else
//                {
//                    tmp[j++] = a[begin2++];
//                }
//            }
//
//            while (begin1 <= end1)
//            {
//                tmp[j++] = a[begin1++];
//            }
//
//            while (begin2 <= end2)
//            {
//                tmp[j++] = a[begin2++];
//            }
//
//            // 归并一组,拷贝一组
//            memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));
//        }
//        printf("\n");
//        gap *= 2;
//    }
//    free(tmp);
//}


Leetcode每日一题——“912.排序数组” 

在leetcode上面有一道题,可以用各种排序测试可不可以通过:

 

 小雅兰在这边尝试了一下归并排序,很轻松就过啦!!!

void _MergeSort(int* a, int begin, int end, int* tmp)
{if (begin >= end){return;}int mid = (begin + end) / 2;//[begin,mid] [mid+1,end]_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid + 1, end, tmp);//归并两个区间int begin1 = begin;int begin2 = mid + 1;int end1 = mid;int end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
//归并排序
void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc失败!!!");return;}_MergeSort(a, 0, n - 1, tmp);free(tmp);
}
int* sortArray(int* nums, int numsSize, int* returnSize){MergeSort(nums, numsSize);*returnSize = numsSize;return nums;
}

还可以这样写,是进行了小区间优化的版本,相对来说好一点,但leetcode上面测试不了此效果:

//直接插入排序
void InsertSort(int* a, int n)
{int i = 0;for (i = 1; i < n; i++){int end = i - 1;int tmp = a[i];while (end >= 0){//插入的数据比原来的数据小if (a[end] > tmp){a[end + 1] = a[end];--end;}else{break;}}a[end + 1] = tmp;}
}
void _MergeSort(int* a, int begin, int end, int* tmp)
{if (begin >= end){return;}//小区间优化if(end-begin+1<10){InsertSort(a+begin,end-begin+1);return;}int mid = (begin + end) / 2;//[begin,mid] [mid+1,end]_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid + 1, end, tmp);//归并两个区间int begin1 = begin;int begin2 = mid + 1;int end1 = mid;int end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}//归并排序
void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc失败!!!");return;}_MergeSort(a, 0, n - 1, tmp);free(tmp);
}
int* sortArray(int* nums, int numsSize, int* returnSize){MergeSort(nums,numsSize);*returnSize = numsSize;return nums;
}

 

 

 但是这道题,用直接插入排序、冒泡排序这种排序就过不了了,会提示:超出时间限制

 遗憾的是:快速排序也没过,小雅兰反复测试了好多遍


好啦,小雅兰今天的归并排序的内容就到这里啦,还要继续加油!!!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/74035.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

etcd实现大规模服务治理应用实战

导读&#xff1a;服务治理目前越来越被企业建设所重视&#xff0c;特别现在云原生&#xff0c;微服务等各种技术被更多的企业所应用&#xff0c;本文内容是百度小程序团队基于大模型服务治理实战经验的一些总结&#xff0c;同时结合当前较火的分布式开源kv产品etcd&#xff0c;…

Windows驱动开发

开发Windows驱动程序时&#xff0c;debug比较困难&#xff0c;并且程序容易导致系统崩溃&#xff0c;这时可以使用Virtual Box进行程序调试&#xff0c;用WinDbg在主机上进行调试。 需要使用的工具&#xff1a; Virtual Box&#xff1a;用于安装虚拟机系统&#xff0c;用于运…

Grafana制作图表-自定义Flink监控图表

简要 有时候我们在官网的Grafana下载的图表是这样的&#xff0c;如下图 #算子的处理时间&#xff0c;就是处理数据的延迟数据抓取&#xff0c;这个的说明看下下面的文章 metrics.latency.interval: 60 metrics.reporter.promgateway.class: org.apache.flink.metrics.prometh…

深度学习与神经网络

人工智能&#xff0c;机器学习&#xff0c;深度学习&#xff0c;神经网络&#xff0c;emmmm&#xff0c;傻傻分不清楚&#xff0c;这都啥呀&#xff0c;你知道吗&#xff1f;我不知道。你知道吗&#xff1f;我不知道。 来来来&#xff0c;接下来&#xff0c;整硬菜&#xff1a…

WAIC2023:图像内容安全黑科技助力可信AI发展

目录 0 写在前面1 AI图像篡改检测2 生成式图像鉴别2.1 主干特征提取通道2.2 注意力模块2.3 纹理增强模块 3 OCR对抗攻击4 助力可信AI向善发展总结 0 写在前面 2023世界人工智能大会(WAIC)已圆满结束&#xff0c;恰逢全球大模型和生成式人工智能蓬勃兴起之时&#xff0c;今年参…

使用事件侦听器和 MATLAB GUI 查看 Simulink 信号研究

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【JavaEE】博客系统前后端交互

目录 一、准备工作 二、数据库的表设计 三、封装JDBC数据库操作 1、创建数据表对应的实体类 2、封装增删改查操作 四、前后端交互逻辑的实现 1、博客列表页 1.1、展示博客列表 1.2、博客详情页 1.3、登录页面 1.4、强制要求用户登录&#xff0c;检查用户的登录状态 …

RabbitMQ:概念和安装,简单模式,工作,发布确认,交换机,死信队列,延迟队列,发布确认高级,其它知识,集群

1. 消息队列 1.0 课程介绍 1.1.MQ 的相关概念 1.1.1.什么是MQ MQ(message queue&#xff1a;消息队列)&#xff0c;从字面意思上看&#xff0c;本质是个队列&#xff0c;FIFO 先入先出&#xff0c;只不过队列中存放的内容是message 而已&#xff0c;还是一种跨进程的通信机制…

【云原生】K8S二进制搭建一

目录 一、环境部署1.1操作系统初始化 二、部署etcd集群2.1 准备签发证书环境在 master01 节点上操作在 node01与02 节点上操作 三、部署docker引擎四、部署 Master 组件4.1在 master01 节点上操 五、部署Worker Node组件 一、环境部署 集群IP组件k8s集群master01192.168.243.1…

牛客网Verilog刷题——VL53

牛客网Verilog刷题——VL53 题目答案 题目 设计一个单端口RAM&#xff0c;它有&#xff1a; 写接口&#xff0c;读接口&#xff0c;地址接口&#xff0c;时钟接口和复位&#xff1b;存储宽度是4位&#xff0c;深度128。注意rst为低电平复位。模块的接口示意图如下。 输入输出描…

基于深度学习的高精度课堂人脸检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要&#xff1a;基于深度学习的高精度课堂人脸检测系统可用于日常生活中或野外来检测与定位课堂人脸目标&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的课堂人脸目标检测识别&#xff0c;另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标…

如何保证接口测试的覆盖率?

写在前面_一定要先谈下接口在测试领域的地位&#xff1a; 在当前企业实际测试技能应用中&#xff0c;功能测试和接口测试应用最广泛。但相比功能测试&#xff0c;接口测试缺口却非常大。 且接口测试在测试领域地位非常高&#xff0c;是软件测试工程师初级和中级分界线。所以测…

生成对抗网络DCGAN学习

在AI内容生成领域&#xff0c;有三种常见的AI模型技术&#xff1a;GAN、VAE、Diffusion。其中&#xff0c;Diffusion是较新的技术&#xff0c;相关资料较为稀缺。VAE通常更多用于压缩任务&#xff0c;而GAN由于其问世较早&#xff0c;相关的开源项目和科普文章也更加全面&#…

海康摄像头开发笔记(一):连接防爆摄像头、配置摄像头网段、设置rtsp码流、播放rtsp流、获取rtsp流、调优rtsp流播放延迟以及录像存储

文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/131679108 红胖子(红模仿)的博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结…

C++如何用OpenCV中实现图像的边缘检测和轮廓提取?

最近有个项目需要做细孔定位和孔距测量&#xff0c;需要做边缘检测和轮廓提取&#xff0c;先看初步效果图&#xff1a; 主要实现代码&#xff1a; int MainWindow::Test() {// 2.9 单个像素长度um 5倍double dbUnit 2.9/(1000*5);// 定义显示窗口namedWindow("src"…

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【ASP.NET MVC】生成页面(6)

本应该继续数据库访问的问题进行探讨&#xff0c;前文确实比较LOW。但本人认为&#xff1a;初学者需要解决的是快速了解知识路线的问题&#xff0c;所谓“生存问题”&#xff0c;所以&#xff0c;干脆把流程先走完。 一、页面生成 下面这张图在前面已经介绍过&#xff1a; 前…

网工内推 | 云计算工程师专场,CCNP/HCIP认证优先

01 弧聚科技 招聘岗位&#xff1a;网络工程师&#xff08;云计算方向&#xff09; 职责描述&#xff1a; 1、作为H3C初级云计算交付工程资源培养对象&#xff0c;需配合完成相关华三产品及服务规范培训。 2、培训赋能后&#xff0c;安排到H3C云项目交付中进行项目交付及驻场支…

【从零开始学习JAVA | 第三十七篇】初识多线程

目录 前言&#xff1a; ​编辑 引入&#xff1a; 多线程&#xff1a; 什么是多线程&#xff1a; 多线程的意义&#xff1a; 多线程的应用场景&#xff1a; 总结&#xff1a; 前言&#xff1a; 本章节我们将开始学习多线程&#xff0c;多线程是一个很重要的知识点&#xff…

【Spring Boot】请求参数传json数组,后端采用(pojo)新增案例(103)

请求参数传json数组&#xff0c;后端采用&#xff08;pojo&#xff09;接收的前提条件&#xff1a; 1.pom.xml文件加入坐标依赖&#xff1a;jackson-databind 2.Spring Boot 的启动类加注解&#xff1a;EnableWebMvc 3.Spring Boot 的Controller接受参数采用&#xff1a;Reque…