【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 算例1

2.2 算例2

2.3 算例3

2.4 算例4

2.5 算例5

2.6 算例6

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

使用机器学习和深度学习对城市声音进行分类是一个有趣的研究课题。下面是一种基本的方法,结合了机器学习(ML)和深度学习(DL)技术:

1. 数据收集和预处理:收集大量城市声音的音频数据集。可以使用麦克风或其他录音设备在不同城市环境下进行采集。确保采集到的音频数据有足够的多样性和代表性。对音频数据进行预处理,如音频剪辑、采样率调整、去噪等。

2. 特征提取:从音频数据中提取有代表性的特征向量。可以使用机器学习常见的音频特征提取方法,如Mel频谱系数(MFCC)、音频能量、过零率等。这些特征可以帮助机器学习和深度学习模型发现城市声音的区别和模式。

3. 机器学习分类:使用机器学习算法对提取的音频特征进行分类。选择适合音频分类的机器学习算法,如支持向量机(SVM)、随机森林(Random Forest)或K最近邻(K-Nearest Neighbors)等。使用预处理的音频数据和特征向量训练机器学习模型,并对其进行评估和优化。

4. 深度学习分类:构建深度学习模型进行城市声音分类。使用深度学习算法,如卷积神经网络(CNN)或循环神经网络(RNN)构建分类模型。使用音频数据的原始波形或经过预处理的特征作为输入,训练深度学习模型并进行模型优化。

5. 模型评估和比较:使用预留的测试集评估机器学习和深度学习模型的性能。比较两种技术在城市声音分类任务上的准确率、召回率、精确率等指标。根据评估结果选择更有效的模型。

6. 可解释性分析:对分类结果进行可解释性分析。了解哪些特征对城市声音的分类起到重要作用,或者使用可解释性方法(如Grad-CAM)来查看深度学习模型对城市声音的决策过程。

7. 模型优化和改进:根据分析结果和实际需求,对机器学习和深度学习模型进行优化和改进。可以尝试使用更复杂的模型架构、调整超参数或增加数据样本等来提高模型的性能。

通过上述方法,可以使用机器学习和深度学习技术对城市声音进行分类。机器学习方法适用于特征提取和分类,而深度学习方法可以直接处理原始音频数据,从而更好地捕捉城市声音的特征和模式。结合两种技术可以提高分类的准确性和效果,对于城市环境监测、噪音控制等方面具有实际应用价值。

该数据集包含来自 8732 个类的 4 个城市声音摘录(<=10 秒),它们是:

空调
汽车喇叭
儿童玩耍
狗吠
钻井
引擎 怠速
枪射击
手提钻
警笛
街头音乐

随附的元数据包含每个声音摘录的唯一 ID 及其给定的类名。随附的 git 存储库中包含此数据集的示例,可以从此处下载完整数据集。

此示例中有 7 个算例:

算例 1:示例简介,探索和可视化数据

算例 2:使用诊断应用程序设计器对数据
进行预处理和提取功能(信号时域特征和频谱特征)
算例 3:模型训练和评估
算例 4:模型部署
算例 5:使用 MFCC 提取特征来训练机器学习模型
算例 6:使用小波分析和深度学习对城市声音进行分类

亮点 :
为音频数据存储
准备现实数据 标准化和规范化数字信号数据(采样率、位深度、通道数) 使用不同的方法提取特征(时域信号特征和频谱特征,MFCC,离散小波变换,Haar 1D小波变换)

📚2 运行结果

2.1 算例1

figure()
datafolder = "UrbanSound8K/structure1";
currentfolder = pwd;
cd(datafolder);
listdir=dir;  
for i=3:1:length(listdir)
    cd(listdir(i).name)
    inside=dir;
    subplot(3,4,i-2);
    [y,fs]=audioread(inside(4).name);
    plot(y(:,:)); 
    soundsc(y(:,:),fs);
    grid on;
    title(listdir(i).name)
    drawnow;
    pause(2)
    cd(strcat(currentfolder,'\',datafolder));
end

2.2 算例2

figure()
datafolder = "UrbanSound8K/structure";
currentfolder = pwd;
cd(datafolder);
listdir=dir;  
for i=3:1:length(listdir)
    cd(listdir(i).name)
    inside=dir;
    subplot(3,4,i-2);
    [y,fs]=audioread(inside(randi([4,100])).name);
    plot(y(:,:)); 
    soundsc(y(:,:),fs);
    grid on;
    title(listdir(i).name)
    drawnow;
    pause(2)
    cd(strcat(currentfolder,'\',datafolder));
end

2.3 算例3

 

2.4 算例4

2.5 算例5

figure()
datafolder = "UrbanSound8K/structure";
currentfolder = pwd;
cd(datafolder);
listdir=dir;  
for i=3:1:length(listdir)
    cd(listdir(i).name)
    inside=dir;
    subplot(3,4,i-2);
    [y,fs]=audioread(inside(4).name);
    plot(y(:,:)); 
    soundsc(y(:,:),fs);
    grid on;
    title(listdir(i).name)
    drawnow;
    pause(5)
    cd(strcat(currentfolder,'\',datafolder));
end

 

2.6 算例6

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]HP ProLiant ML和DL服务器选用QLogic的第三代CNA产品[J].计算机与网络,2011,37(Z1):127.

[2]Kevin Chng (2023). Classify Urban Sound using Machine Learning & Deep Learning

[3]崔琳. 音频标记深度神经网络模型研究[D].燕山大学,2020.DOI:10.27440/d.cnki.gysdu.2020.001881.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/74014.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ASP.NET MVC】生成页面(6)

本应该继续数据库访问的问题进行探讨&#xff0c;前文确实比较LOW。但本人认为&#xff1a;初学者需要解决的是快速了解知识路线的问题&#xff0c;所谓“生存问题”&#xff0c;所以&#xff0c;干脆把流程先走完。 一、页面生成 下面这张图在前面已经介绍过&#xff1a; 前…

网工内推 | 云计算工程师专场,CCNP/HCIP认证优先

01 弧聚科技 招聘岗位&#xff1a;网络工程师&#xff08;云计算方向&#xff09; 职责描述&#xff1a; 1、作为H3C初级云计算交付工程资源培养对象&#xff0c;需配合完成相关华三产品及服务规范培训。 2、培训赋能后&#xff0c;安排到H3C云项目交付中进行项目交付及驻场支…

【从零开始学习JAVA | 第三十七篇】初识多线程

目录 前言&#xff1a; ​编辑 引入&#xff1a; 多线程&#xff1a; 什么是多线程&#xff1a; 多线程的意义&#xff1a; 多线程的应用场景&#xff1a; 总结&#xff1a; 前言&#xff1a; 本章节我们将开始学习多线程&#xff0c;多线程是一个很重要的知识点&#xff…

【Spring Boot】请求参数传json数组,后端采用(pojo)新增案例(103)

请求参数传json数组&#xff0c;后端采用&#xff08;pojo&#xff09;接收的前提条件&#xff1a; 1.pom.xml文件加入坐标依赖&#xff1a;jackson-databind 2.Spring Boot 的启动类加注解&#xff1a;EnableWebMvc 3.Spring Boot 的Controller接受参数采用&#xff1a;Reque…

openCV C++环境配置

文章目录 一、openCV 安装二、新建项目三、配置环境变量四、测试使用 编译器:vs2017 OpenCV:4.5.4 一、openCV 安装 将openCV安装到一个路径下&#xff0c;我安装到了D盘根目录下 二、新建项目 在vs2017新建控制台空项目&#xff0c;打开项目属性 在VC目录 -> 包含目录下…

【Spring Boot】请求参数传json对象,后端采用(map)CRUD案例(101)

请求参数传json对象&#xff0c;后端采用&#xff08;map&#xff09;接收的前提条件&#xff1a; 1.Spring Boot 的Controller接受参数采用&#xff1a;RequestBody 2.需要一个Json工具类&#xff0c;将json数据转成Map&#xff1b; 工具类&#xff1a;Json转Map import com…

面试热题(接雨水问题)

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 我们看到题的第一步&#xff0c;永远是对入参进行判断 public int trap(int[] height) {if (height null) {return 0;}...} 但是我们想想看&#xff0c;接…

Springboot -- 按照模板生成docx、pdf文件,docx转pdf格式

使用 poi-tl 根据模板生成 word 文件。 使用 xdocreport 将 docx 文件转换为 pdf 文件。 xdocreport 也支持根据模板导出 word &#xff0c;但是 poi-tl 的功能更齐全&#xff0c;操作更简单&#xff0c;文档清晰。 poi-tl 、xdocreport 内部均依赖了 poi &#xff0c;要注意两…

伊语IM即时通讯源码/im商城系统/纯源码IM通讯系统安卓+IOS前端纯原生源码

伊语IM即时通讯源码/im商城系统/纯源码IM通讯系统安卓IOS前端纯原生源码&#xff0c; 后端是java源码。

利用鸿鹄快速构建公司IT设备管理方案

需求描述 相信应该有一部分朋友跟我们一样&#xff0c;公司内部有很多各种各样的系统&#xff0c;比如资产管理、CRM、issue管理等等。这篇文章介绍下&#xff0c;鸿鹄是如何让我们的资产系统&#xff0c;按照我们的需求展示数据的。 我们的资产管理系统&#xff0c;是使用开源…

机器学习---线性回归、多元线性回归、代价函数

1. 线性回归 回归属于有监督学习中的一种方法。该方法的核心思想是从连续型统计数据中得到数学模型&#xff0c;然后 将该数学模型用于预测或者分类。该方法处理的数据可以是多维的。 回归是由达尔文的表兄弟Francis Galton发明的。Galton于1877年完成了第一次回归预测&…

51:电机(ULN2003D)

1:介绍 我们51单片机使用的是直流电机 直流电机是一种将电能转换为机械能的装置。一般的直流电机有两个电极&#xff0c;当电极正接时&#xff0c;电机正转&#xff0c;当电极反接时&#xff0c;电机反转 直流电机主要由永磁体&#xff08;定子&#xff09;、线圈&#xff08;转…

SpringCloudAlibaba之Ribbon

Ribbon是nacos自带的负载均衡器&#xff0c;属于客户端的负载均衡 但是在Spring高级版本中让LoadBalancer替代了 本人用的是2.1.0的nacos&#xff0c;ribbon还没有被替换。 使用&#xff1a; 在配置类中&#xff1a;LoadBalanced BeanLoadBalancedpublic RestTemplate restT…

MacOS Monterey VM Install ESXi to 7 U2

一、MacOS Monterey ISO 准备 1.1 下载macOS Monterey 下载&#x1f517;链接 一定是 ISO 格式的&#xff0c;其他格式不适用&#xff1a; https://www.mediafire.com/file/4fcx0aeoehmbnmp/macOSMontereybyTechrechard.com.iso/file 1.2 将 Monterey ISO 文件上传到数据…

编辑接口和新增接口的分别调用

在后台管理系统中,有时候会碰到新增接口和编辑接口共用一个弹窗的时候. 一.场景 在点击新增或者编辑的时候都会使用这个窗口,新增直接调用接口进行增加即可&#xff0c;编辑则是打开这个窗口显示当前行的数据,然后调用编辑接口。 二.处理方法 在默认的情况下,这个窗口用来处理…

【从零开始学习JAVA | 第三十八篇】应用多线程

目录 前言&#xff1a; 多线程的实现方式&#xff1a; Thread常见的成员方法&#xff1a; 总结&#xff1a; 前言&#xff1a; 多线程的引入不仅仅是提高计算机处理能力的技术手段&#xff0c;更是适应当前时代对效率和性能要求的必然选择。在本文中&#xff0c;我们将深入…

使用贝叶斯滤波器通过运动模型和嘈杂的墙壁传感器定位机器人研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

微服务系列<3>---微服务的调用组件 rpc 远程调用

什么是rpc调用,让我们调用远程方法就像调用本地方法一样 这就属于rpc调用 rpc是针对于本地来说的 调用远程方法根调用本地方法一样 如果能达到这种效果 就是rpc调用如果达到一种效果 调用远程和调用本地一样 他就是一种rpc框架2个微服务 之间发的调用 我们之前通过ribbon的方式…

云原生落地实践的25个步骤

一、什么是云原生&#xff1f; 云原生从字面意思上来看可以分成云和原生两个部分。 云是和本地相对的&#xff0c;传统的应用必须跑在本地服务器上&#xff0c;现在流行的应用都跑在云端&#xff0c;云包含了IaaS,、PaaS和SaaS。 原生就是土生土长的意思&#xff0c;我们在开始…

数论分块学习笔记

准备开始复习莫比乌斯反演&#xff0c;杜教筛这一部分&#xff0c;先复习一下数论分块 0.随便说说 数论分块可以计算如下形式的式子 ∑ i 1 n f ( i ) g ( ⌊ n i ⌋ ) \sum_{i1}^{n}f(i)g(\lfloor\frac{n}{i}\rfloor) ∑i1n​f(i)g(⌊in​⌋)。 利用的原理是 ⌊ n i ⌋ \lf…