高效构建 vivo 企业级网络流量分析系统

作者:vivo 互联网服务器团队- Ming Yujia

随着网络规模的快速发展,网络状况的良好与否已经直接关系到了企业的日常收益,故障中的每一秒都会导致大量的用户流失与经济亏损。因此,如何快速发现网络问题与定位异常流量已经成为大型企业内必须优先解决的问题,诸多网络流量分析技术也同时应运而生。

一、概述

随着网络规模的快速发展,网络状况的良好与否已经直接关系到了企业的日常收益,故障中的每一秒都会导致大量的用户流失与经济亏损。每一家企业都在不断完善自己的网络监控手段,但在监控体系建设过程中,却又不可避免的面临以下难点

  1. 网络流量数据庞大:由于网络流量的规模和复杂性都非常高,很难对大量的数据进行有效的监控和分析。

  2. 流量数据采集分析建设成本高昂:为获取准确的流量数据,需要使用高效的数据采集技术和大容量的存储设备,以及大量的开发资源,这使得监控成本直线上升。

  3. 监控手段单一、缺乏扩展性:传统的监控手段一般只能监控固定的几个数据点,难以针对不同的网络环境进行定制化和扩展。

  4. 难以快速定位和解决问题:由于网络流量数据量大、变化频繁,往往需要花费大量的时间和精力才能找出问题根源。

因此,如何利用尽可能低的监控成本快速发现网络问题与定位异常流量已经成为大型企业内必须优先解决的问题,诸多网络流量分析技术也同时应运而生。

sFlow技术就是这样一种高效、灵活的解决方案。它可以通过流量采样技术抽取数据包中的部分信息,从而实现对大量网络流量数据进行持续监控。同时,sFlow技术还具有灵活的配置和扩展性,可以根据实际需求进行定制,并支持多种网络设备和协议。这些优势使得sFlow技术在现代网络监控和管理中得到广泛应用。

二、常见的网络流量采集技术

主流的网络流量采集主要分为全流量采集与采样流量采集两种。

2.1 全流量采集

全流量采集包括端口镜像、分光设备等方式。在流量庞大的网络中,使用端口镜像方式不仅会导致全链路时延增加,而且会使吞吐量庞大情况下的网络设备压力激增。分光设备虽然可以降低链路时延,但同样存在采购价格高昂的门槛。除此之外,由于大型企业内IDC规模庞大,由此导致的全流量数据量也会激增,想要完整的靠自研做好全流量数据分析,不仅需要一定的存储计算资源,也需要一定的软件开发周期,不利于项目的快速搭建成型。

2.2 采样流量采集

在流量分析系统欠缺的情况下,使用采样分析的优势就体现出来了,相对于全流量,他部署成本低,数据分析代价小,很适合对异常流量的快速定位以及网络内的趋势占比分析。以下主要对比介绍sFlow与Netflow两种采样方式的优缺点。

sFlow在流量监控上范围更广,在满足硬件要求的IDC内部环境,使用sFlow进行采样流量监测,可以有效降低网络设备负载,并且提供实时流量监控手段,以应对突发网络异常场景。

三、基于sFlow的系统设计

3.1 基础设计

在满足硬件条件的情况下,基于sFlow的基础系统设计很简单,使用sFlow agent + sFlow collector + sFlow analyser即可实现整个流程的数据闭环。

sFlow agent:通过enabled相关网络设备上的sFlow能力,设定采样比等参数并制定收集端相应地址,即可对端口收发流量进行采集。agent侧更重要的反而是如何确定采集的网络设备范围,相对于无目的的全量网络设备部署,针对边界核心网络设备进行部署更有意义,因为所有的对外流量最终都必须经过边界网络设备。在能更好监控外部流量异常的情况下,也能减轻数据存储负担。

sFlow collector:收集并解析agent侧采集传输的 sFlow datagrams。

sFlow analyser:对格式化的数据进行可视化分析展示,以供网络管理员进行有效观测分析。

图片

3.2 开源+自研:架构进阶

在确定了基本架构之后,如何进行组件选用与定制化功能扩充,开源解决方案elastiflow为我们提供了很好的示例,笔者基于开源进行了扩展,以满足更多定制化功能。

sFlow agent:使用上报统一vip的形式进行端口流量采样(官方规定的采样比需是2^n),可以利用vip的LB能力进行负载均衡,使得sFlow报文均衡打到收集端固定端口。针对不同的网络线路设定不同的采样比,在降低数据存储的同时也可以保证重要线路更高的精准性。

图片

sFlow collector:使用ELK套件进行数据收集与可视化分析是比较成熟的技术方案之一。因此,收集端我们使用logstash进行原生数据报文收集与解析。elastiflow的作者使用了logstash内原生的udp-sFlow报文解析组件进行数据解析,但笔者在实际测试中发现,虽然该方案能得到结构化更好的数据格式,但在数据解析的性能表现上很差,在数据量庞大的情况下会造成大量数据丢包现象,导致数据准确性下降。而sFlowtool由于底层是基于C语言来编写的,在性能表现上很优异,单物理机(32c64g)即可达到10w+tps,虽然对sFlow报文解析后的数据结构化要弱一点,但可以在后续分析模块对数据进行清洗与结构化构建。sFlowtool分析的数据示例如下所示。经由logstash的数据发送到kafka消息队列中。

[root@server src]# ./sFlowtool -l
FLOW,10.0.0.254,0,0,00902773db08,001083265e00,0x0800,0,0,10.0.0.1,10.0.0.254,17,0x00,64,35690,161,0x00,143,125,80
FLOW后的字段释义如下
agent_address
inputPort
outputPort
src_MAC
dst_MAC
ethernet_type
in_vlan
out_vlan
src_IP
dst_IP
IP_protocol
ip_tos
ip_ttl
udp_src_port OR tcp_src_port OR icmp_type
udp_dst_port OR tcp_dst_port OR icmp_code
tcp_flags
packet_size
IP_size
sampling_rate

sFlow analyser:通过从kafka实时消费数据,将数据进行清洗结构化,并借助三方meta data,对解析后的数据进行软件定义,以便于后续存储与分析。

database+display:使用Elasticsearch+Kibana进行存储与可视化展示,同时也可以利用mertic beat对logstash的采集性能进行监控。Kibana作为Bi类的数据可视化方案,提供了大部分可供免费使用的图表及Dashboard,可以很好的进行可视化分析。

3.3 分析端软件定义

拥有原生数据的情况下,我们已经能基于一些ip五元组等进行基本会话流量分析。但是流量数据所能体现的价值远不止这些,利用企业内其他的cmdb等平台,可以为我们的流量数据提供更大价值。

网络设备维度:通过数据内的交换机地址,出入向端口,可以根据采集配置的交换机端口index,判断该条流量出入向。也可基于网络设备ip,赋予其通道,线路,以及设备名等等其他属性。

ip维度:ip五元组提供了探索数据更高的可能,我们可以根据归属ip,判断他的项目,部门等归属信息,也可反向关联域名。这在对异常流量进行分析判断时能够快速定位到所属业务方,很大程度提高了运维效率。

3.4 压缩存储与可视化自研

由于Elasticsearch本身的数据压缩效果不够理想,使得我们在进行长时间存储数据时体量庞大臃肿。相应的,olap型数据库Druid很好地解决了这个问题,数据采样后经过分析端严格的结构化处理,可以在Druid内实现很好的数据压缩。除此之外,Druid内嵌的数据预聚合能力也能更好的帮助我们对历史数据进行降精处理,减少存储压力。切换存储引擎后,也就意味着没办法再使用Kibana进行通用展示,使用自研的web服务框架也能够应对灵活的需求场景,实现更多定制化的分析。

3.5 基于Celery设计的轻量流处理模型

虽然流量数据经过了采样降精,但整体的数据量依然很庞大。高效快速的进行流处理,降低整体系统时延至30s内,能够更快的帮助网络管理人员发现问题,除却利用传统的流处理工具外,我们也可以使用Celery来构建一个轻量高效易扩展的分布式流处理集群。

图片

Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。我们基于celery实时异步处理的特性,设计 celerybeat → watcher → producer → consumer 的消费链路来进行流处理。

celery beat:作为定时任务的触发器,每1s向watcher队列里派发一个新任务。

watcher worker:在队列中拿到任务后,转发给producer,并根据设置的队列最大值,对producer队列进行拥塞控制。

producer worker:在队列中拿到任务后,从kafka中获取采集的流量数据,按照batch size批量发送给consumer队列,并根据设置的队列最大值,对consumer队列进行拥塞控制。

consumer worker:在队列中拿到任务后,根据本地缓存/共享缓存内的业务信息,对采集数据进行数据清洗,打业务标签等操作,并写入另一kakfa或直接写入database。

每一个角色以及节点可以通过Celery broker进行通信,实现分布式集群部署,针对consumer单元化操作,可以使用eventlet以协程方式启动,以保证集群高并发消费。

四、应用场景

4.1 机房维度流量分析

通过基于网络cmdb的ip匹配,对流量数据进行机房维度的汇总,可以得到机房整体的对外出入向流量分析,在IDC同外部交互时,整体流量的趋势变化,是判断带宽占用程度的直接标准。

图片

4.2 网络线路信息关联

通过对网络设备基于ip+ifindex的逻辑信息映射,可以对核心通道线路做到聚合展示,在针对一些公网线路异常,专用线路带宽打满等异常问题时,通过观察线路分析可以直接准确定位故障发生的第一时间点。

图片

4.3 ip会话信息挖掘

虽然sflow只截取了报文的头部信息而不包含数据包部分,但ip五元组本身也提供了极大的网络流量分析价值。

利用会话信息,我们可以准确有效的定位异常流量的ip归属,通过ip+服务端口的,我们甚至可以定位具体产生流量异常的服务与进程,从而做出下一步决策。除此之外,ip也能同企业内CMDB产生联动,定位到ip所属资源的所在资源组,从而得到不同部门/行政组产生的流量占比分析,这同时也有利于在产生异常流量时第一时间感知到相关业务,并进行通知管控。

4.4 ip归属地分析

除了结合内部信息,通过运营商提供的归属地信息,我们可以查看ip访问的来源,进行相关归属地分析与Dashboard制作。

图片

五、总结

要实现对网络全面、实时的监控分析必须依靠先进有效的网络监控协议和技术来满足业务日益增长的需求。基于sFlow的流量分析虽然在轻量化构建上有着很大的优势,在面对异常流量时也能够基于流量趋势与分布占比做出快速反应。但sFlow本身的采样却不包含报文内数据包的信息,针对一些sql注入、数据安全等等网络安全攻防问题,没办法提供准确定位与解决方案。因此,全流量分析也应是流量分析系统未来必不可少的一环,两者相结合才能够提供更全面、更精细化的流量监控,为数据中心的网络安全保驾护航。

六、未来展望

虽然sFlow技术在网络性能监控和管理领域中得到了广泛应用,但在未来更大规模的网络流量场景冲击下,还需要具备更多的能力:

1.支持更多协议和应用:sFlow监控的思想不仅适用于网络流量,还可以监控应用流量、虚拟化环境、云平台等。未来,sFlow技术应该支持更多的协议和应用,以更好地适应新型网络环境。

2.自适应流量采集技术:sFlow技术的流量采集技术是固定周期的,但是随着网络流量的变化,固定周期的采集可能无法准确反映网络实时状态。未来,sFlow监控技术应该支持自适应流量采集技术,能够根据实际网络流量变化自动调整采集周期。

3.便捷的管理功能:sFlow目前的配置更多依赖于网络管理人员在交换机上进行配置,无法实现一键下发,自动发现,快速调整采样比等等功能,未来更需要一个能够便捷下发命令,热加载配置变更的sFlow管理平台。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/74794.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JS交互篇】BOM基础、Window、Location、Navagator、Screen、History对象

一、BOM 概述 在 JavaScript 语言中有三种对象:内置对象、宿主对象、自定义对象。 宿主对象就是执行 JavaScript 脚本的环境所提供的对象。对于网页编程来说,js 是运行在浏览器上的,所以对于网页编程来说,宿主对象就是浏览器对象…

Spring详解(学习总结)

目录 一、Spring概述 (一)、Spring是什么? (二)、Spring框架发展历程 (三)、Spring框架的优势 (四)、Spring的体系结构 二、程序耦合与解耦合 (一&…

SOP/详解*和**/python数据结构(iter,list,tuple,dict)/ 解包

一、错误解决合集 1. > combined_seq.named_children() 2. isinstance 2th parameter : must be a type or tuple of types > 改为tuple,不要用列表。改为 LLLayer (nn.Conv2d,nn.Linear) 3. File “test.py”, line 90, in calculate_fin_fout print(“hi”…

MySQL第六七弹,自连接等复杂查询,索引部分知识

一、💛 自连接:自己和自己笛卡尔积(奇淫巧技,特殊场景很牛逼) SQL:编写条件都是列和列之间的比较,但是SQL无法进行,行与行之间的比较。 如:显示所有java比计算机原理高的…

想参加华为杯竞赛、高教社杯和数学建模国赛的小伙伴看过来

本文目录 ⭐ 赛事介绍⭐ 辅导比赛 ⭐ 赛事介绍 ⭐ 参赛好处 ⭐ 辅导比赛 ⭐ 写在最后 ⭐ 赛事介绍 华为杯全国研究生数学建模竞赛是由华为公司主办的一项面向全国研究生的数学建模竞赛。该竞赛旨在通过实际问题的建模和解决,培养研究生的创新能力和团队合作精神&a…

【Winform学习笔记(五)】引用自定义控件库(dll文件)

引用自定义控件库dll文件 前言正文1、生成dll文件2、选择工具箱项3、选择需要导入的dll文件4、确定需要导入的控件5、导入及使用 前言 在本文中主要介绍 如何引用自定义控件库(dll文件)。 正文 1、生成dll文件 通过生成解决方案 或 重新生成解决方案 生成 dll 文件 生成的…

Centos部署Springboot项目详解

准备启动jar包,app.jar放入指定目录。 一、命令启动 1、启动命令 java -jar app.jar 2、后台运行 nohup java -jar app.jar >/dev/null 2>&1 & 加入配置参数命令 nohup java -Xms512M -Xmx512M -jar app.jar --server.port9080 spring.profiles…

[代码案例] 快速入手matlab绘图基本指令

主要内容 Matlab绘图指令基本语法,涵盖画布位置大小,坐标调整,图例标签,子图绘制等 part 1 生成绘图数据据 part 2 绘图基本指令 part 3 多条曲线绘制 part 4 子图分块绘制方法 part 5 指定画布绘制 代码 % part 1 t0:0.01:30;…

Swish for MacBook触控板窗口管理软件

Swish可以帮助您使用触控板,轻松对mac窗口进行管理,只需提前设置好预定的设置即可,非常方便! 几乎所有的窗口管理工具用的都是快捷键或者鼠标拖移的方式来管理窗口,Swish 却另辟蹊径,为窗口管理引入了手势…

静态路由综合实验

实验拓扑如下: 实验要求如下: 【1】R6为isp,接口IP地址均为公有地址;该设备只能配置IP地址,之后不能再对其进行任何配置 【2】R1~R5为局域网,私有IP地址192.168.1.0/24,请合理分配 【3】所有路由器上环回…

寒假作业(蓝桥杯2016年省赛C++A组第6题 )

题目: 注:蓝桥杯2016年省赛CA组第6题 请填写表示方案数目的整数。 题解: 由题可知这是一道全排列问题,因此我们可以使用c的next_permutation函数对于1-13的数字进行全排列即可,并每次排列判断是否满足题意。 注意…

2023 蓝桥杯真题B组 C/C++

https://www.dotcpp.com/oj/train/1089/ 题目 3150: 蓝桥杯2023年第十四届省赛真题-冶炼金属 题目描述 小蓝有一个神奇的炉子用于将普通金属 O 冶炼成为一种特殊金属 X。这个炉子有一个称作转换率的属性 V,V 是一个正整数,这意味着消耗 V 个普通金 属 O…

RF手机天线仿真介绍(二):孔径调谐和阻抗调谐

目录 简介孔径调谐阻抗调谐孔径调谐组件选择分析 简介 由于手机运行所需的频段、功能和模式的数量不断增加,现代手机的 RF 前端 (RFFE) 设计也日益复杂。需要采用更多天线,使用载波聚合 (CA)、4x4 MIMO、Wi-Fi MIMO 和新的宽带 5G 频段来提供更高的数据…

【初阶C语言】学会结构体

1.结构体类型的声明 2.结构体初始化 3.结构体成员访问 4.结构体传参 前言:结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。 一、结构体类型的声明 1.结构的声明 结构体声明的模板: struct tag {member-li…

某银行软件测试笔试题

(时间90分钟,满分100分) 考试要求:计算机相关专业试题 一、填空题(每空1分,共10分) 1. ______验证___是保证软件正确实现特定功能的一系列活动和过程。 2. 按开发阶段分,软件测试可…

寻找旋转排序数组中的最小值——力扣153

文章目录 题目描述解法 二分法 题目描述 解法 二分法 int findMin(vector<int>& nums){int l0, rnums.size()-1;while(l<r){int mid (lr)/2;if(nums[mid]<nums[r]) rmid;else lmid1;}return nums[l];}

【雕爷学编程】 MicroPython动手做(38)——控制触摸屏

MixPY——让爱(AI)触手可及 MixPY布局 主控芯片&#xff1a;K210&#xff08;64位双核带硬件FPU和卷积加速器的 RISC-V CPU&#xff09; 显示屏&#xff1a;LCD_2.8寸 320*240分辨率&#xff0c;支持电阻触摸 摄像头&#xff1a;OV2640&#xff0c;200W像素 扬声器&#…

git常用指令

git add命令 作用&#xff1a;移动文件&#xff1a;工作区-->暂存区 git add .&#xff1a;把所有文件都放到暂存区 git commit命令 作用&#xff1a;移动文件&#xff1a;暂存区-->本地仓库 git status命令 作用&#xff1a;查看修改状态 git log命令 作用&#xf…

小研究 - 主动式微服务细粒度弹性缩放算法研究(四)

微服务架构已成为云数据中心的基本服务架构。但目前关于微服务系统弹性缩放的研究大多是基于服务或实例级别的水平缩放&#xff0c;忽略了能够充分利用单台服务器资源的细粒度垂直缩放&#xff0c;从而导致资源浪费。为此&#xff0c;本文设计了主动式微服务细粒度弹性缩放算法…

c语言实现八大排序详细解析

首先先看排序算法的整体分类 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的记录&#xff…