硬件串口通信协议学习(UART、IIC、SPI、CAN)

0.前言

学习资料:江协科技的个人空间-江协科技个人主页-哔哩哔哩视频

  1. 通信的目的:将一个设备的数据传送到另一个设备,扩展硬件系统
  2. 通信协议:制定通信的规则,通信双方按照协议规则进行数据收发

  1. 全双工:通信双方能够同时进行双向通信,一般有两根数据线。比如TX和RX,MOSI和MISO,发送和接收互不影响。
  2. 半双工:只有一条数据线(IIC、CAN和USB),
  3. 时钟信号:高速接收方什么时候需要采集数据,分为同步和异步。IIC和SPI有单独的时钟线,所以他们是同步的,接收方可以在时钟信号的指引下进行采样。剩下的串口,CAN和USB没有时钟线,所以需要双方约定一个采样频率,为异步通信。

CAN协议使用两条差分信号线进行通信,其中一条线是CAN高线,另一条线是CAN低线。这两条线通过电压的差异来表示数据的0和1。CAN协议的物理层只有这两条差分线,因此在一个时刻只能表示一个信号,所以CAN通信是半双工的,即在同一时刻只能有一个节点发送信号,其他节点只能接收信号

USB协议,数据传输方向,D+只能接另外一个设备的D+,D-接D-,一根数据线为半双工。

USART中的“S”表示同步,只支持时钟输出,不支持时钟输入,是为了兼容别的协议或特殊用途而设计的,并不支持两个USART之间进行同步通信,所以这个功能几乎不会用到,一般更常使用的是UART异步收发器。

一、UART协议

1.1  UART协议简介

  1. UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的缩写,它是一种常见的串口通信接口。
  2. 使用差分信号可以抑制共模噪声,可以极大的提高信号的抗干扰特性,所以一般差分信号的传输速度和传输距离都非常高。

  1. TX与RX要交叉连接
  2. 当只需单向的数据传输时,可以只接一根通信线
  3. 当电平标准不一致时,需要加电平转换芯片

电平标准:

  1. TTL电平:+3.3V或+5V表示1,0V表示0
  2. RS232电平:-3~-15V表示1,+3~+15V表示0
  3. RS485电平:两线压差+2~+6V表示1,-2~-6V表示0(差分信号)

串口参数及时序:

  1. 波特率:串口通信的速率(bit/s)
  2. 起始位:标志一个数据帧的开始,固定为低电平
  3. 数据位:数据帧的有效载荷,1为高电平,0为低电平,低位先行
  4. 校验位(选填):用于数据验证,根据数据位计算得来
  5. 停止位:用于数据帧间隔,固定为高电平

无校验位:

 有校验位:

 1.2 串口通信时序图

串口时序:低位先行,先发送B0(先转换为二进制,然后先画低位波形)

发送一个字节的数据0x55(0101 0101):8位数据+1位停止位,无校验位

起始位低电平,停止位高电平

 偶校验位(低电平0):

 二、IIC协议

2.1 IIC协议简介

  1. I2C(Inter IC Bus)是由Philips公司开发的一种通用数据总线
  2. 两根通信线:SCL(Serial Clock)、SDA(Serial Data
  3. 同步,半双工
  4. 带数据应答
  5. 支持总线挂载多设备(一主多从、多主多从)

硬件电路:

  1. 所有I2C设备的SCL连在一起,SDA连在一起
  2. 设备的SCL和SDA均要配置成开漏输出模式
  3. SCL和SDA各添加一个上拉电阻,阻值一般为4.7KΩ左右

 

  1. 从机的权利比较小,对于SCL线,在任何时刻都只能被动的读取,从机不允许控制SCL线。
  2. 对于SDA数据线,从机不允许主动发起对SDA的控制。只有在主机发送读取从机的命令后,或者从机应答的时候,从机才能短暂地获取SDA的控制权

主机的SDA引脚在发送的时候是输出模式,在接收的时候是输入模式。为了避免总线没协调好,导致电源短路的问题。IIC的设计是禁止所有设备输出强上拉的高电平

设计为弱上拉电阻(4.7K)加开漏输出的模式

这个模式具有“线与”的功能,只要总线上有一个输出低电平,总线就处于低电平。只有所有设备都输出高电平,总线才输出高电平。

2.2 IIC时序基本单元

起始和终止信号均由主机产生,从机不允许产生起始和终止信号,所以在总线空闲状态时,从机必须始终放手。

  1. 起始条件:SCL高电平期间,SDA从高电平切换到低电平。下降沿,触发起始条件。
  2. 终止条件:SCL高电平期间,SDA从低电平切换到高电平。上升沿,触发终止条件,回到最初的空闲状态(SDA和SCL均为高电平)
  3. 除了起始和终止条件,每个时序单元的SCL都是以低电平开始,低电平结束

  • 发送一个字节:SCL低电平期间,主机将数据位依次放到SDA线上(高位先行,先发送B7)然后释放SCL,从机将在SCL高电平期间读取数据位,所以SCL高电平期间SDA不允许有数据变化,依次循环上述过程8次,即可发送一个字节。

  • SCL低电平期间:允许SDA的电平发生变化,如果发送1就为高电平,发送0为低电平。
  • SCL高电平期间:不允许SDA的电平发生变化。
  • 一般在SCL上升沿的时刻,从机就已经读取完成了。从机在上升沿时立刻把数据读走。主机在放手SCL一段时间后(高电平),就可以继续拉低SCL,传输下一位了
  • 主机也需要在SCL下降沿之后,尽快把数据放在SDA上。
  • 接收一个字节:SCL低电平期间,从机将数据位依次放到SDA线上(高位先行),然后释放SCL,主机将在SCL高电平期间读取数据位,所以SCL高电平期间SDA不允许有数据变化,依次循环上述过程8次,即可接收一个字节(主机在接收之前,需要释放SDA,即高电平

  1. 发送应答:主机在接收完一个字节之后,在下一个时钟发送一位数据数据0表示应答,数据1表示非应答
  2. 接收应答:主机在发送完一个字节之后,在下一个时钟接收一位数据,判断从机是否应答,数据0表示应答,数据1表示非应答(主机在接收之前,需要释放SDA
  •  
    • 接收应答:主机发送完毕后,需要立刻调用接收应答的时序(在SCL低电平期间,SDA切换为高电平)

 2.3 IIC通信时序参考图

  • 指定地址写
  • 对于指定设备(Slave Address),在指定地址(Reg Address)下,写入指定数据(Data)

空闲状态,SDA、SCL均为高电平。

然后主机需要给从机写入数据时,SCL高电平期间,拉低SDA,产生起始条件。

发送一个字节的数据(字节的内容:从机地址7位+1位读写位)

读写位:0表示之后的时序主机要进行写入操作,1表示之后的时序主机要进行读出操作。

应答位RA(Receive ACK, RA):根据IIC协议的规定,在这个时刻,主机要释放SDA

SCL低电平期间,SDA可以变换数据

SCL高电平期间,SDA保持不变,从机读取数据

  • 当前地址读
  • 对于指定设备(Slave Address),在当前地址指针指示的地址下,读取从机数据(Data)

  • 指定地址读
  • 对于指定设备(Slave Address),在指定地址(Reg Address)下,读取从机数据(Data)

三、SPI协议

3.1 SPI协议简介

  1. SPI(Serial Peripheral Interface)是由Motorola公司开发的一种通用数据总线
  2. 四根通信线:SCK(Serial Clock)、MOSI(Master Output Slave Input)、MISO(Master Input Slave Output)、SS(Slave Select)从机选择线,有几个从机,需要几根从机线,一人一根
  3. 同步,全双工(两根数据线,一根发送,一根接收,设备双方可以同时进行数据通信)
  4. 支持总线挂载多设备(一主多从)

SPI通信的基础是交换一个字节:有了交换一个字节,就可以实现发送一个字节接收一个字节,和发送同时接收一个字节,这三种功能。

硬件电路:

  1. 所有SPI设备的SCK、MOSI、MISO分别连在一起
  2. 主机另外引出多条SS控制线,分别接到各从机的SS引脚
  3. 输出引脚配置为推挽输出输入引脚配置为浮空或上拉输入

从机SS引脚,输入低电平代表被选中进行数据通信,如果只有一个从机设备,SS引脚可以直接接地。

  1. 从机设备的DI:相当于MOSI引脚
  2. 从机设备的DO:相当于MISO引脚
  3. CS片选:其实就是SS

移位示意图:高位先行,每来一个时钟,移位寄存器都会向左进行移动一位。

原理:在波特率发生器时钟的上升沿,所有移位寄存器向左移动一位,移出的位放到引脚上。波特率发生器的下降沿,引脚上的位,采样输入到移位寄存器的最低位。

在波特率发生器的上升沿:移出一位放到引脚上:

 

 在波特率发生器的下降沿:主机和从机都会进行数据采样输入:

 8个时钟后,完成一个字节的交换:一般在接收的时候,主机会统一发送0x00或0xFF,去跟从机换数据。

 3.2 SPI时序基本单元

  1. 起始条件:SS从高电平切换到低电平
  2. 终止条件:SS从低电平切换到高电平
  3. 在通信期间:SS始终保持在低电平,在从机SS未被选中时,从机的MISO引脚必须关断输出,也就是设置为高阻态。

CPOL::Clock Polarity,时钟极性

CPHA:Clock Phase,时钟相位

每一位可以配置为1或0,总共组合起来,共有4种模式。在实际使用中,只需要其中的一种即可。

注意:CHPA表示的是时钟相位,决定第一个时钟采样移入还是第二个时钟采样移入。并不能单独决定上升沿采样还是下降沿采样。

3.3 交换一个字节的时序图

  1. 交换一个字节(模式0)
  2. CPOL=0:空闲状态时,SCK为低电平
  3. CPHA=0:SCK第一个边沿移入数据,第二个边沿移出数据

  1. 交换一个字节(模式1),常用
  2. CPOL=0:空闲状态时,SCK为低电平
  3. CPHA=1:SCK第一个边沿移出数据,第二个边沿移入数据

通讯原理:

  1. SS高电平时,从机未被选中,MISO用一条中间的线表示高阻态。
  2. SS下降沿之后,从机的MISO被允许开启输出,SS上升沿之后,从机的MISO必须置回高阻态
  3. 移位传输的操作:因为CPHA = 1,所以SCK第一个边沿移出数据(所以在SCK第一个上升沿,主机和从机同时移出数据)。主机通过MOSI移出最高位B7,从机通过MISO移出最高位B7。
  4. 时钟运行,产生下降沿,此时主机和从机同时移入数据,也就是进行数据采样。主机移出的B7进入从机移位寄存器的最低位B0。从机移出的B7进入主机移位寄存器的最低位。这样一个时钟脉冲产生完毕,一个数据位传输完毕。

通过上述步骤可以完成一个字节的交换。在SS的上升沿,MOSI还可以再变化一次,将MOSI置到一个默认的高电平或低电平,当然也可以不管他。MISO从机必须得置回高阻态,此时如果主机的MISO为上拉输入,那MISO引脚的电平为高电平。如果主机MISO为浮空输入,此时MISO引脚的电平不确定。

  1. 交换一个字节(模式2)
  2. CPOL=1:空闲状态时,SCK为高电平
  3. CPHA=0:SCK第一个边沿移入数据,第二个边沿移出数据

  1. 交换一个字节(模式3)
  2. CPOL=1:空闲状态时,SCK为高电平
  3. CPHA=1:SCK第一个边沿移出数据,第二个边沿移入数据

 3.4 模式1完整时序图

向SS指定从机设备,发送指令0x06

四、CAN协议 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/75529.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OPC DA 客户端与服务器的那点事

C#开发OPC客户端,使用OPCDAAuto.dll。在开发过程中偶遇小坎坷,主要记录一下问题解决办法。 1、建立客户端,参考链接。建立WinFrom工程,将博客中代码全部复制即可运行: https://www.cnblogs.com/kjgagaga/p/17011730.…

01-1 搭建 pytorch 虚拟环境

pytorch 管网:PyTorch 一 进入 Anaconda 二 创建虚拟环境 conda create -n pytorch python3.9注意要注意断 VPN切换镜像: 移除原来的镜像 # 查看当前配置 conda config --show channels conda config --show-sources# 移除之前的镜像 conda config --…

OSPF协议RIP协议+OSPF实验(eNSP)

本篇博客主要讲解单区域的ospf,多区域的仅作了解。 目录 一、OSPF路由协议概述 1.内部网关协议和外部网关协议 二、OSPF的应用环境 1.从以下几方面考虑OSPF的使用 2.OSPF的特点 三、OSPF重要基本概念 3.1,辨析邻居和邻接关系以及七种邻居状态 3…

7年测试经验之谈 —— WebSocket协议测试实战

当涉及到WebSocket协议测试时,有几个关键方面需要考虑。在本文中,我们将探讨如何使用Python编写WebSocket测试,并使用一些常见的工具和库来简化测试过程。 1、什么是WebSocket协议? WebSocket是一种在客户端和服务器之间提供双向…

【RabbitMQ(day3)】扇形交换机和主题交换机的应用

文章目录 第三种模型(Publish/Subscribe 发布/订阅)扇型(funout)交换机Public/Subscribe 模型绑定 第四、第五种模型(Routing、Topics)第四种模型(Routing)主题交换机(To…

如何使用ONLYOFFICE+ffmpeg来给视频文件打马赛克

如何使用ONLYOFFICEffmpeg来给视频文件打马赛克 我这里之前写过很多关于ONLYOFFICE使用、安装的系列图文,也写过很多关于ffmpeg使用的图文,那么这次继续,把这两个开源软件放在一起,能碰撞出什么火花般的功能来。 这就是给视频文…

Linux虚拟机中安装MySQL5.6.34

目录 第一章、xshell工具和xftp的使用1.1)xshell下载与安装1.2)xshell连接1.3)xftp下载安装和连接 第二章、安装MySQL5.6.34(不同版本安装方式不同)2.1)关闭防火墙,传输MySQL压缩包到Linux虚拟机2.2&#x…

熟练掌握ChatGPT解决复杂问题——学会提问

目录 引言 一、5W1H分析法 1. 简单的问题(what、where、when、who) 2.复杂的问题(why、how) 2.1 为什么(Why)——原因 2.2 方式 (How)——如何 二、如何提问得到更高质量的答案…

(自控原理)线性系统的根轨迹法

目录 一、根轨迹法的基本概念 1、根轨迹概念 2、根轨迹方程 二、根轨迹绘制的基本法则 1、绘制根轨迹基本法则 三、系统性能的分析 1、闭环零点与时间响应 一、根轨迹法的基本概念 1、根轨迹概念 三大分析矫正方法:时域法、复域法(根轨迹法)、频域法 2、根…

Jmeter组件作用域及执行顺序

目录 一、Jmeter八大可执行元件 二、组件执行顺序 三、组件作用域 四、特殊说明 一、Jmeter八大可执行元件 配置元件---Config Element 用于初始化默认值和变量,以便后续采样器使用。配置元件大其作用域的初始阶段处理,配置元件仅对其所在的测试树分…

Screens 4 for mac VNC客户端 强大的远程控制工具

Screens 4 for Mac 是一款功能强大的 VNC 客户端软件,为 Mac 用户提供了便捷的远程访问和控制解决方案。无论您是需要远程管理服务器、办公电脑,还是需要远程协助他人解决问题,Screens 4 都是您的理想选择。 Screens 4 for Mac具备简洁直观的…

elasticsearch 将时间类型为时间戳保存格式的时间字段格式化返回

dsl查询用法如下: GET /your_index/_search {"_source": {"includes": ["timestamp", // Include the timestamp field in the search results// Other fields you want to include],"excludes": []},"query": …

使用 Simulink 进行 STM32 编程

目录 介绍 所需材料 步骤 1:在MATLAB中设置STM32-MAT软件路径步骤 2:在STM32CubeMX中创建一个项目步骤 3:配置时钟和 GPIO 引脚步骤 4:项目经理并生成代码步骤 5:在 Simulink 中创建模型步骤 6:在模型中插…

leetcode每日一练-第88题-合并两个有序数组

一、解题方法 先合并&#xff0c;再排序 二、code class Solution { public:void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {for(int i0;i<n;i){nums1[mi]nums2[i];//将 nums2 中的元素逐个复制到 nums1 的尾部}sort(nums1.beg…

路由器工作原理(第二十九课)

路由器工作原理(第二十九课) 一图胜过千言 1) 路由:数据从一个网络到另外一个网络之间转发数据包的过程称为路由 2) 路由器:连接不同网络,实现不同网段之间的通信 3)路由表:路由器选择数据的传输路径的依据 原始的路由表 Destination/Mask Proto Pre Cost …

使用ngrok实现内网穿透

前言&#xff1a;因为公司对接的某个项目要搭建一个测试环境&#xff0c;所以使用内网穿透的方式来搭建。非常方便&#xff0c;而且还节省资源&#xff0c;最重要的是免费啊这个工具。 ngrok官网&#xff1a;https://ngrok.com/ 点击下载&#xff0c;很快就能下好。 下好之…

【排序算法】python之冒泡,选择,插入,快速,归并

参考资料&#xff1a; 《Python实现5大排序算法》《六大排序算法&#xff1a;插入排序、希尔排序、选择排序、冒泡排序、堆排序、快速排序》 --代码似乎是C语言 ———————— 本文介绍5种常见的排序算法和基于Python实现&#xff1a; 冒泡排序&#xff08;Bubble Sort&am…

【机器学习】对 MLOps 的友好的介绍(MLOps1)

一、说明 我对 MLOps 感兴趣已经有一段时间了。我第一次从机器学习工程师那里了解到它&#xff0c;由于我当时还是一名博士生&#xff0c;我并不知道它的存在。然而&#xff0c;我的好奇心被激起了&#xff0c;我开始了解它。回想起来&#xff0c;我很后悔没有早点了解它&#…

iOS——锁与死锁问题

iOS中的锁 什么是锁锁的分类互斥锁1. synchronized2. NSLock3. pthread 递归锁1. NSRecursiveLock2. pthread 信号量Semaphore1. dispatch_semaphore_t2. pthread 条件锁1. NSCodition2. NSCoditionLock3. POSIX Conditions 分布式锁NSDistributedLock 读写锁1. dispatch_barri…

css实现卡片的左上角有一个三角形的遮盖效果

需求: 卡片的左上角有一个绿色的三角形标签,用来区分状态 实现: .vCard{position: relative;overflow: hidden; } .vCard::before {content: "";position: absolute;top: 0;left: 0;width: 0;height: 0;border-bottom: 20px solid transparent;border-left: 20px …