用C语言构建一个数字识别卷积神经网络

8d858f7f97e348979ddd766b6fc45a7f.jpeg

 卷积神经网络的具体原理和对应的python例子参见末尾的参考资料2.3.

这里仅叙述卷积神经网络的配置, 其余部分不做赘述,构建和训练神经网络的具体步骤请参见上一篇: 用C语言构建一个手写数字识别神经网路

卷积网络同样采用简单的三层结构,包括输入层conv_layer,中间层maxpool_layer, 和输出层output_layer, 其中输出层为全连接层.

 Input(28*28) |>>> CONV3X3 (26x26x8_out)  >>>|<<< MAXPOOL2X2 (13x13x8_out) >>>|<<< NVCELLs (10_out) >>>|

输入层conv_layer:  

为3x3的卷积层, 默认8个卷积核, 采用valid_padding(不填充),移动扫描步长为1,不考虑偏置项. 需要通过训练来确定各个卷积核参数. 3x3的卷积核相比5x5和7x7的卷积核其参数量更少,非线性度更高,同时可以提取更小的特征. (5x5和7x7的卷积可以用多层3x3卷积来表示, 当然,随着层数的增加可能会产生新的问题.) 卷积层的输入部分就是灰度值表示的28x28的手写数字图像,这里也预先进行了归一化处理,即除以255.0.
每个核对28x28数据进行卷积运算后输出26x26个数值. 每个卷积核只需要学习9个参数, 8个卷积核一共是72个参数. 如果是用20个全连接的神经元作为输入层的话,一共需要学习(28x28+1)x20=15700个参数.

中间层maxpool_layer:  

采用2x2最大池化,步长也为2, 池化层没有参数, 不需要学习.MAXPOOL具有防止过拟合的作用,因其仅对最大值对应的节点进行反向传导,相当于断开了与其他节点的连接.在这里maxpool直接将conv_layer每个核的输出26x26下采样到13x13.

输出层output_layer:

 一共10个神经元,分别对应0~9数字的可能性,与中间层的输出进行全连接,这里中间层的输出数据已展平成一维.假定中间层的输出是13x13x8, 那么展平后就是1352个节点.也就是说输出层的每一个神经元都需要与这1352个节点连接,每一个神经元需要学习1352(w)+1(b)个参数.

取5万条训练样本进行训练,训练后再进行测试,其准确率可超过94%.
与全连接的神经网络相比较,卷积神经网络的参数量大大降低,训练的所需要时间也相应减少.

源代码:

https://github.com/midaszhou/nnc
下载后编译:
make TEST_NAME=test_nnc3

9b6222d11de54bc7881ea3e68b1adf55.png

参考资料:
1.  MNIST手写数字集 http://yann.lecun.com/exdb/mnist/

2.  CNNs, Part 1: An Introduction to Convolutional Neural Networks - victorzhou.com 

3.  CNNs, Part 2: Training a Convolutional Neural Network - victorzhou.com

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/76804.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新2024届【海康威视】内推码【GTK3B6】

最新2024届【海康威视】内推码【GTK3B6】 【内推码使用方法】 1.请学弟学妹们登录校招官网&#xff0c;选择岗位投递简历&#xff1b; 2.投递过程中填写内推码完成内推步骤&#xff0c;即可获得内推特权。 内推码&#xff1a;GTK3B6 内推码&#xff1a;GTK3B6 内推码&…

01背包笔记

01背包题目链接 题意&#xff1a;有一个容量为m的背包以及n个可以拿的物品&#xff0c;给出n个物品的体积和价值&#xff0c;要求输出可以拿的最大价值 思路&#xff1a;代表在前i件物品中拿取总体积不超过j的最大价值 由此可以分情况讨论状态转移 当j<v[i]时&#xff0c;说…

STM32(HAL)串口中断接收

目录 1、简介 2 基础配置 2.1.1 SYS配置 2.1.2 RCC配置 2.2 串口外设配置 2.3 项目生成 3、KEIL端程序整合 1、简介 本文对HAL串口中断函数进行介绍。 2 基础配置 2.1.1 SYS配置 2.1.2 RCC配置 2.2 串口外设配置 2.3 项目生成 3、KEIL端程序整合 首先在main.c文件中进行…

【Spring】Spring之循环依赖底层源码解析

什么是循环依赖 A依赖了B&#xff0c;B依赖了A。 示例&#xff1a; // A依赖了B class A{public B b; }// B依赖了A class B{public A a; }其实&#xff0c;循环依赖并不是问题&#xff0c;因为对象之间相互依赖是很正常的事情。示例&#xff1a; A a new A(); B b new B…

C5.0决策树建立个人信用风险评估模型

通过构建自动化的信用评分模型&#xff0c;以在线方式进行即时的信贷审批能够为银行节约很多人工成本。本案例&#xff0c;我们将使用C5.0决策树算法建立一个简单的个人信用风险评估模型。 导入类库 读取数据 #创建编码所用的数据字典 col_dicts{} #要编码的属性集 cols [che…

51单片机学习--LED点阵屏显示图形动画

为了通用性考虑&#xff0c;需要把用到的几个口用特殊位声明来重新命名&#xff0c;由于RCLK在头文件中已有定义&#xff0c;所以这里把P3^5声明成RCK吧。。这样的做法可以提高可读性 sbit RCK P3^5; //RCLK sbit SCK P3^6; //SRCLK sbit SER P3^4;接下来编写74HC595的输…

AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解

本文使用工具&#xff0c;作者:秋葉aaaki 免责声明: 工具免费提供 无任何盈利目的 大家好&#xff0c;我是风雨无阻。 今天为大家带来的是 AI 绘画Stable Diffusion 研究&#xff08;三&#xff09;sd模型种类介绍及安装使用详解。 目前&#xff0c;AI 绘画Stable Diffusion的…

vue+neo4j(neo4j desktop安装和使用)

vueneo4j&#xff08;neo4j desktop安装和使用&#xff09; 本文目录 vueneo4j&#xff08;neo4j desktop安装和使用&#xff09;官网下载安装基本使用创建项目新增数据库连接数据库 使用cypher构建简单知识图谱创建节点创建关系删除节点及关系查询节点和关系 数据导出为json文…

SpringCloudAlibaba之Sentinel(一)流控篇

前言&#xff1a; 为什么使用Sentinel&#xff0c;这是一个高可用组件&#xff0c;为了使我们的微服务高可用而生 我们的服务会因为什么被打垮&#xff1f; 一&#xff0c;流量激增 缓存未预热&#xff0c;线程池被占满 &#xff0c;无法响应 二&#xff0c;被其他服务拖…

LeetCode--剑指Offer75(3)

目录 题目描述&#xff1a;剑指 Offer 20. 表示数值的字符串&#xff08;中等&#xff09;题目接口解题思路什么是有限状态自动机&#xff1f;如何使用&#xff1f; 代码 PS: 题目描述&#xff1a;剑指 Offer 20. 表示数值的字符串&#xff08;中等&#xff09; 请实现一个函数…

Windows7+内网, 安装高版本nodejs,使用vite+vue3+typescript开发项目

前言&#xff1a;vite只支持高版本的nodejs&#xff0c;而高版本的nodejs只支持windows8及以上&#xff0c;且vite还对浏览器版本有兼容问题。以下均为vite官网截图 1、安装好低版本的nodejs win7系统建议安装13.及以下&#xff0c;我的是12.12.0这个版本。nodejs低版本官网下载…

【前端】搭建Vue3框架

目录 一、搭建准备二、node.js安装1、下载并安装2、配置默认安装目录和缓存日志目录①、创建默认安装目录和缓存日志目录&#xff08;我的node.js目录在D盘&#xff0c;所以直接在node.js文件夹下创建&#xff09;②、执行命令&#xff0c;配置默认安装目录和缓存日志目录到刚才…

Java ThreadPoolExecutor,Callable,Future,FutureTask 详解

目 录 一、ThreadPoolExecutor类讲解 1、线程池状态 五种状态 2、ThreadPoolExecutor构造函数 2.1&#xff09;线程池工作原理 2.2&#xff09;KeepAliveTime 2.3&#xff09;workQueue 任务队列 2.4&#xff09;threadFactory 2.5&#xff09;handler 拒绝策略 3、常…

【JMeter】 使用Synchronizing Timer设置请求集合点,实现绝对并发

目录 布局设置说明 Number of Simulated Users to Group Timeout in milliseconds 使用时需要注意的点 集合点作用域 实际运行 资料获取方法 布局设置说明 参数说明&#xff1a; Number of Simulated Users to Group 每次释放的线程数量。如果设置为0&#xff0c;等同…

【css】使用float实现水平导航栏

该实例使用float 浮动实现元素浮动在水平方向&#xff0c;从而实现水平导航栏效果。 overflow: hidden&#xff1a;当不给父级元素设置高度的时候&#xff0c;其内部元素浮动后会导致下面的元素顶上去&#xff0c;这是因为子元素浮动后&#xff0c;子元素脱离标准流&#xff0…

深度学习——注意力机制、自注意力机制

什么是注意力机制&#xff1f; 1.注意力机制的概念&#xff1a; 我们在听到一句话的时候&#xff0c;会不自觉的捕获关键信息&#xff0c;这种能力叫做注意力。 比如&#xff1a;“我吃了100个包子” 有的人会注意“我”&#xff0c;有的人会注意“100个”。 那么对于机器来说…

C语言:相交链表

Lei宝啊&#xff1a;个人主页 愿美好与我们不期而遇 题目&#xff1a; 描述 给你两个单链表的头节点 headA和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 接口 struct ListNode *getIntersectionNode (str…

与“云”共舞,联想凌拓的新科技与新突破

伴随着数字经济的高速发展&#xff0c;IT信息技术在数字中国建设中起到的驱动和支撑作用也愈发凸显。特别是2023年人工智能和ChatGPT在全球的持续火爆&#xff0c;更是为整个IT产业注入了澎湃动力。那么面对日新月异的IT信息技术&#xff0c;再结合疫情之后截然不同的经济环境和…

springboot+vue网红酒店客房预定系统的设计与实现_ui9bt

随着计算机技术发展&#xff0c;计算机系统的应用已延伸到社会的各个领域&#xff0c;大量基于网络的广泛应用给生活带来了十分的便利。所以把网红酒店预定管理与现在网络相结合&#xff0c;利用计算机搭建网红酒店预定系统&#xff0c;实现网红酒店预定的信息化。则对于进一步…