C++二叉搜索树剖析

在这里插入图片描述


目录

  • 🍇二叉搜索树概念
  • 🍈二叉搜索树查找
  • 🍉二叉搜索树的插入
  • 🍊二叉搜索树的删除
  • 🍍二叉搜索树的查找、插入、删除实现
  • 🍋二叉搜索树的应用
  • 🥭二叉搜索树的性能分析
  • 🍓总结


🍇二叉搜索树概念

二叉搜索树,又称为二叉排序树,是一种特殊的二叉树。它要么是一棵空树,要么具有以下性质:

  1. 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;
  2. 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值;
  3. 它的左右子树也分别为二叉搜索树。

二叉搜索树的特点是可以快速地查找、插入和删除节点,因为它的节点按照大小关系排列,形成了一种有序结构。它常被用于实现关联数组、集合等数据结构,也是许多其他算法的基础。

在这里插入图片描述

🍈二叉搜索树查找

二叉搜索树的查找可以通过以下步骤进行:

  • 从根节点开始比较,将待查找的值与根节点的值进行比较,如果相等,则返回该节点;如果待查找的值比根节点的值大,则往右子树走查找,反之则往左子树走查找。

  • 重复上述步骤,直到找到待查找的值或者走到空节点仍未找到。如果走到空节点仍未找到,则说明该值不存在于二叉搜索树中。

由于二叉搜索树的节点按照大小关系排列,因此查找的时间复杂度为O(log n),其中n为二叉搜索树中节点的个数。

在这里插入图片描述

在这里插入图片描述

🍉二叉搜索树的插入

二叉搜索树的插入可以通过以下步骤进行:

  1. 如果二叉搜索树为空,则直接将新节点作为根节点,赋值给root指针。

  2. 如果二叉搜索树不为空,则按照二叉搜索树的性质,从根节点开始比较待插入节点的值和当前节点的值的大小关系,如果待插入节点的值比当前节点的值小,则往左子树走查找,如果左子树为空,则将待插入节点作为当前节点的左子节点;

  3. 如果待插入节点的值比当前节点的值大,则往右子树走查找,如果右子树为空,则将待插入节点作为当前节点的右子节点。

  4. 如果待插入节点的值与当前节点值相等,表示已经存在这个值,插入失败。

  5. 重复上述步骤,直到找到合适的插入位置为止。

二叉搜索树的插入时间复杂度为O(log n),其中n为二叉搜索树中节点的个数。

在这里插入图片描述

🍊二叉搜索树的删除

二叉搜索树的删除可以通过以下步骤进行:

首先查找待删除的节点是否在二叉搜索树中,如果不存在,则直接返回;否则,进入下一步操作。

根据待删除节点的情况,进行以下处理:

  1. 如果待删除节点是叶子节点,则直接删除该节点即可。

  2. 如果待删除节点只有左子树或者右子树,则将待删除节点的父节点指向待删除节点的子节点,然后删除待删除节点。

  3. 如果待删除节点既有左子树又有右子树,则需要找到它的中序遍历下的后继节点(即右子树中的最小节点),将后继节点的值赋给待删除节点,然后将待删除节点的右指向后继节点的右,然后删除后继节点。

重复上述步骤,直到完成待删除节点的删除。
需要注意的是,二叉搜索树的删除操作可能会影响树的结构,因此需要对树进行平衡操作,以保证二叉搜索树的性质不被破坏。

二叉搜索树的删除时间复杂度为O(log n),其中n为二叉搜索树中节点的个数。

在这里插入图片描述

🍍二叉搜索树的查找、插入、删除实现

  1. 二叉搜索树节点的定义
template<class k>
class BStreeNode
{
public:BStreeNode(const k& key):_key(key), _left(nullptr), _right(nullptr){}k _key;BStreeNode* _left;BStreeNode* _right;
};

二叉搜索树节点的定义有以下成员:

  • key:表示节点的关键码,用于比较节点的大小关系,通常是一个模板类型,可以是整型、字符型、字符串、自定义类型等。

  • left:表示节点的左子节点,通常是一个指向BStreeNode类型的指针,如果节点没有左子节点,则该指针为空指针nullptr。

  • right:表示节点的右子节点,通常是一个指向BStreeNode类型的指针,如果节点没有右子节点,则该指针为空指针nullptr。

  1. 二叉搜索树的定义
template<class k>
class BStree
{typedef BStreeNode<k> Node;
public:Node* find(const k& key);bool insert(const k& key);bool erase(const k& key);	void InOrder();
private:Node* _root = nullptr;void _InOrder(const Node* root);
};

二叉搜索树的定义包括以下成员:

  • Node:表示二叉树的节点,通常是一个模板类,包括节点的关键码、左子节点、右子节点等成员。

  • find():用于在二叉树中查找指定关键码的节点,如果找到,则返回该节点的指针;否则返回空指针nullptr。

  • insert():用于向二叉树中插入一个新节点,如果插入成功,则返回true;否则返回false。

  • erase():用于从二叉树中删除指定关键码的节点,如果删除成功,则返回true;否则返回false。

  • InOrder():用于对二叉树进行中序遍历,按照节点的关键码从小到大输出节点的值。

  1. 二叉搜索树查找实现
	Node* find(const k& key){Node* cur = _root;while (cur){if (cur->_key < key)			cur = cur->_right;					else if (cur->_key > key)cur = cur->_left;elsereturn cur;}return nullptr;}

二叉搜索树的查找操作可以通过比较节点的键值来实现。从根节点开始,若当前节点的键值小于要查找的键值,则继续在右子树中查找;若当前节点的键值大于要查找的键值,则继续在左子树中查找;若当前节点的键值等于要查找的键值,则返回当前节点。

上述代码实现了二叉搜索树的查找操作。从根节点开始,通过循环遍历整棵树,比较节点的键值,根据大小关系移动到左子树或右子树中,直到找到要查找的节点或遍历到叶子节点为止。如果找到了要查找的节点,则返回该节点指针;否则返回空指针。

  1. 二叉搜索树插入实现
	bool insert(const k& key){//空树if (_root == nullptr){Node* newnode = new Node(key);_root = newnode;return true;}//不为空Node* cur = _root;Node* parent = nullptr;while (cur){parent = cur;if (cur->_key < key)cur = cur->_right;else if (cur->_key > key)cur = cur->_left;elsereturn false;}Node* newnode = new Node(key);parent->_key > key ? parent->_left = newnode : parent->_right = newnode;return true;}

二叉搜索树的插入操作可以通过比较节点的键值来实现。从根节点开始,若要插入的键值小于当前节点的键值,则继续在左子树中插入;若要插入的键值大于当前节点的键值,则继续在右子树中插入;若要插入的键值等于当前节点的键值,则返回插入失败。

上述代码实现了二叉搜索树的插入操作。首先判断树是否为空,如果为空,则直接将新节点作为根节点;否则,从根节点开始循环遍历整棵树,比较节点的键值,根据大小关系移动到左子树或右子树中,直到找到合适的插入位置或遍历到叶子节点为止。如果找到了合适的插入位置,则创建新节点并插入到该位置;否则返回插入失败。

  1. 二叉搜索树删除的实现
	bool erase(const k& key){//查找该节点及其父亲节点Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}				elsebreak;}if (cur == nullptr)return false;//为叶子节点else if (cur->_left == nullptr && cur->_right == nullptr)delete cur;//只有一个孩子else if ((cur->_left == nullptr && cur->_right) || (cur->_left && cur->_right == nullptr)){if (parent->_left == cur){cur->_left == nullptr ? parent->_left = cur->_right : parent->_left = cur->_left;}else{cur->_left == nullptr ? parent->_right = cur->_right : parent->_right = cur->_left;}delete cur;}//有两个孩子else if (cur->_left && cur->_right){Node* del = cur->_right;//找右子树最小节点while (del->_left){del = del->_left;}//赋值cur->_key = del->_key;//待删除节点的右指向最小节点右cur->_right = del->_right;//删除最小节点delete del;}return true;}

二叉搜索树的删除操作比较复杂,需要考虑删除节点的情况分为三种:

  • 待删除节点为叶子节点:直接删除该节点即可。

  • 待删除节点只有一个孩子:将该节点的孩子节点接到该节点的父节点上,然后删除该节点。

  • 待删除节点有两个孩子:找到该节点的右子树中的最小节点,将其键值赋值给待删除节点,然后删除最小节点。

上述代码实现了二叉搜索树的删除操作。首先从根节点开始循环遍历整棵树,查找待删除节点及其父节点。如果没有找到待删除节点,则返回删除失败;否则根据待删除节点的情况进行不同的操作。如果待删除节点为叶子节点,则直接删除该节点;如果待删除节点只有一个孩子,则将孩子节点接到父节点上,然后删除该节点;如果待删除节点有两个孩子,则找到右子树中的最小节点,将其键值赋值给待删除节点,然后删除最小节点。最后返回删除成功。

  1. 二叉搜索树中序遍历实现
	void _InOrder(const Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_key << ' ';_InOrder(root->_right);}

二叉搜索树的中序遍历是指按照节点键值的大小关系,先遍历左子树,再遍历根节点,最后遍历右子树。因为二叉搜索树的中序遍历结果是一个有序序列,因此可以使用中序遍历来实现对二叉搜索树的排序操作。

上述代码实现了二叉搜索树的中序遍历操作。首先判断当前节点是否为空,如果为空则返回;否则按照左子树、根节点、右子树的顺序递归遍历整棵树,并输出节点的键值。

🍋二叉搜索树的应用

  • K模型:K模型是指只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索的值。例如,可以以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树,在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

  • KV模型:KV模型是指每一个关键码key都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见,例如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;再比如统计单词次数,统计成功后,给定单词就可以快速找到其出现的次数,单词与其出现次数就是<word, count>就构成一种键值对。二叉搜索树可以用来实现KV模型,以key作为二叉搜索树的节点,value作为节点的值,通过比较key的大小关系来实现快速查找、插入和删除节点的操作。

将上述二叉搜索树修改为KV模型:

  • 二叉树节点定义示例代码
template<class K, class V>
class BStreeNode
{
public:BStreeNode(const K& key, const V& value):_key(key), _value(value), _left(nullptr), _right(nullptr){}K _key;V _value;BStreeNode* _left;BStreeNode* _right;
};
  • 中序输出代码:
    void _InOrder(const Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_key << ":" << root->_value << endl;_InOrder(root->_right);}
  • 测试代码:
void test1()
{BStree<string, string> tree;tree.insert("apple", "苹果");tree.insert("banana", "香蕉");tree.insert("orange", "橘子");tree.insert("peach", "桃子");tree.insert("pear", "梨");tree.InOrder();
}

运行结果:

在这里插入图片描述

🥭二叉搜索树的性能分析

插入和删除操作都需要先进行查找操作,因此二叉搜索树的查找效率代表了二叉搜索树各个操作的性能。对于有n个节点的二叉搜索树,如果每个元素查找的概率相等,那么二叉搜索树的平均查找长度是节点在二叉搜索树的深度的函数,即节点越深,则比较次数越多。

需要注意的是,对于同一个关键码集合,如果各关键码插入的次序不同,可能会得到不同结构的二叉搜索树。因为二叉搜索树的结构取决于插入顺序,如果插入的顺序不同,可能会导致树的结构不同,进而影响树的查找效率。因此,在实际应用中,需要根据实际情况选择合适的插入顺序,以获得更好的性能。

在这里插入图片描述
最优情况下,二叉搜索树的高度为 log2N,每一次查找可以将搜索范围缩小一半,因此平均比较次数为 log2N。

最差情况下,二叉搜索树的高度为 (N-1),每一次查找只能将搜索范围缩小一层,因此平均比较次数为 (1+2+…+N)/N = (N+1)/2,约等于 N/2。这种情况发生在插入的数据是有序的时候,导致二叉搜索树退化为链表。此时可以使用平衡二叉树来解决这个问题。

🍓总结

二叉搜索树是一种非常常见的数据结构,它是一棵二叉树,其中每个节点都包含一个键值,且左子树的所有节点的键值小于当前节点的键值,右子树的所有节点的键值大于当前节点的键值。这种特定的结构使得二叉搜索树能够快速地进行查找、插入、删除等操作。

在实际应用中,二叉搜索树被广泛使用,如在数据库索引、编译器符号表、路由表等领域。对于一个包含n个节点的二叉搜索树,其查找、插入、删除的时间复杂度均为O(logn),这使得它在处理大数据量时具有很高的效率。

但是,二叉搜索树也存在一些问题。当数据集合中的元素是随机分布的时,二叉搜索树的性能是非常好的。但是,当数据集合中的元素是有序的时,二叉搜索树的性能会退化为O(n),这就是所谓的“不平衡问题”。为了解决这个问题,我们可以使用平衡二叉树、红黑树等数据结构来优化二叉搜索树。

此外,二叉搜索树在插入重复元素时也存在问题。如果我们简单地将重复元素插入到二叉搜索树中,那么查找和删除操作就会变得非常麻烦。为了解决这个问题,我们可以使用多重集合、哈希表等数据结构来处理重复元素。

总之,二叉搜索树是一种非常重要的数据结构,它能够快速地进行查找、插入、删除等操作,但是在实际应用中需要注意避免和解决一些问题,如不平衡问题、重复元素问题等。

文章总结不易,如果觉得有所帮助的话就👍,文中所有代码均放在gitee上,关注博主,持续更新中…

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/76846.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

爬虫教程1_Xpath 入门教程

Xpath 入门教程 在编写爬虫程序的过程中提取信息是非常重要的环节&#xff0c;但是有时使用正则表达式无法匹配到想要的信息&#xff0c;或者书写起来非常麻烦&#xff0c;此时就需要用另外一种数据解析方法&#xff0c;也就是本节要介绍的 Xpath 表达式。 Xpath表达式 XPath…

Java版工程行业管理系统源码-专业的工程管理软件- 工程项目各模块及其功能点清单 em

​ Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目…

【Linux 网络】 传输层协议之TCP协议 TCP的三次握手和四次挥手

TCP协议 TCP协议段格式谈谈什么是 “可靠” 和 “不可靠”TCP协议段——序号与确认序号TCP协议段——窗口大小TCP协议段 —— 六个标志位确认应答机制&#xff08;ACK&#xff09;超时重传机制连接管理机制TCP 的三次握手四次挥手TCP三次握手四次挥手总结图 滑动窗口流量控制拥…

【Spring Cloud 三】Eureka服务注册与服务发现

系列文章目录 【Spring Cloud一】微服务基本知识 Eureka服务注册与服务发现 系列文章目录前言一、什么是Eureka&#xff1f;二、为什么要有服务注册发现中心&#xff1f;三、Eureka的特性四、搭建Eureka单机版4.1Eureka服务端项目代码pom文件配置文件启动类启动项目查看效果 E…

docker配置远程连接端口

配置docker 配置远程连接端口 vi /lib/systemd/system/docker.servicesystemctl daemon-reload && systemctl restart docker firewall-cmd --zonepublic --add-port2375/tcp --permanenthttp://node2:2375/version

Node.js之express框架学习心得

Node.js&#xff1a;颠覆传统的服务器端开发 Node.js是基于Chrome V8引擎构建的JavaScript运行时&#xff0c;它采用了完全不同的开发模型。Node.js使用事件驱动和非阻塞I/O的方式处理请求&#xff0c;通过单线程和异步机制&#xff0c;实现高效的并发处理。这意味着在Node.js中…

【每日易题】数据结构链表篇——单链表oj题(1),几道典型例题带你快速掌握单链表

君兮_的个人主页 勤时当勉励 岁月不待人 C/C 游戏开发 Hello,米娜桑们&#xff0c;这里是君兮_&#xff0c;今天来填一个埋了好久的坑&#xff0c;在暑假之前就预告过这个系列&#xff0c;但由于各种原因&#xff08;主要是有点懒&#xff09;今天才开坑。我们这个系列主要是…

1310. 数三角形

题目链接&#xff1a;https://www.acwing.com/problem/content/1312/ 首先不考虑三点共线的情况一共有 种&#xff0c;现在来计算三点共线的情况 1.三点在一条直线上 2.三点在一条竖线上 3.三点在一条斜线上&#xff0c;正反斜线对称&#xff0c;仅需考虑一边的情况 如果…

视频汇聚平台EasyCVR视频广场侧边栏支持拖拽

为了提升用户体验以及让平台的操作更加符合用户使用习惯&#xff0c;我们在EasyCVR v3.3版本中&#xff0c;支持面包屑侧边栏的广场视频、分组列表、收藏这三个模块拖拽排序&#xff0c;并且该操作在视频广场、视频调阅、电子地图、录像回放等页面均能支持。 TSINGSEE青犀视频…

服务器运行python程序的使用说明

服务器的使用与说明 文章目录 服务器的使用与说明1.登录2.Python的使用2.1 服务器已安装python32.2 往自己的用户目录安装python31.首先下载安装包2.解压缩3.编译与安装 2.3 新建环境变量2.4 测试 3 创建PBS作业并提交 1.登录 windowsr打开运行命令窗口&#xff0c;在运行框中…

【万字长文】SpringBoot整合Atomikos实现多数据源分布式事务(提供Gitee源码)

前言&#xff1a;在最近的实际开发的过程中&#xff0c;遇到了在多数据源的情况下要保证原子性的问题&#xff0c;这个问题当时遇到了也是思考了一段时间&#xff0c;后来通过搜集大量资料与学习&#xff0c;最后是采用了分布式事务来解决这个问题&#xff0c;在讲解之前&#…

puppeteer监听response并封装为express服务调用

const express require(express); const puppeteer require(puppeteer); const app express(); let browser; // 声明一个全局变量来存储浏览器实例app.get(/getInfo, async (req, res) > {try {const page_param req.query.page; // 获取名为"page"的查询参数…

接口测试之文件上传

在日常工作中&#xff0c;经常有上传文件功能的测试场景&#xff0c;因此&#xff0c;本文介绍两种主流编写上传文件接口测试脚本的方法。 首先&#xff0c;要知道文件上传的一般原理&#xff1a;客户端根据文件路径读取文件内容&#xff0c;将文件内容转换成二进制文件流的格式…

Gson:解析JSON为复杂对象:TypeToken

需求 通过Gson&#xff0c;将JSON字符串&#xff0c;解析为复杂类型。 比如&#xff0c;解析成如下类型&#xff1a; Map<String, List<Bean>> 依赖&#xff08;Gson&#xff09; <dependency><groupId>com.google.code.gson</groupId><art…

MyBatis查询数据库之一(概念+创建项目+基础交互)

目录 1.MyBatis是什么&#xff1f; 2.为什么学习MyBatis&#xff1f; 3. 怎么学 MyBatis 4.第⼀个MyBatis查询 4.1 添加MyBatis框架支持 4.1.1老项目添加MyBatis 4.1.2 新项目添加MyBatis 4.2 配置连接字符串和MyBatis 4.2.1 配置连接字符串 4.2.2 配置 MyBatis 中的…

eNSP:ospf和mgre的配置

实验要求&#xff1a; 第一步&#xff1a;路由、IP的配置 r1&#xff1a; <Huawei>sys Enter system view, return user view with CtrlZ. [Huawei]sys r1 [r1]int loop0 [r1-LoopBack0]ip add 192.168.1.1 24 [r1-LoopBack0]int g0/0/0 [r1-GigabitEthernet0/0/0]ip a…

Golang之路---04 并发编程——信道/通道

信道/通道 如果说 goroutine 是 Go语言程序的并发体的话&#xff0c;那么 channel&#xff08;信道&#xff09; 就是 它们之间的通信机制。channel&#xff0c;是一个可以让一个 goroutine 与另一个 goroutine 传输信息的通道&#xff0c;我把他叫做信道&#xff0c;也有人将…

基于STM32CubeMX和keil采用通用定时器中断实现固定PWM可调PWM波输出分别实现LED闪烁与呼吸灯

文章目录 前言1. PWM波阐述2. 通用定时器2.1 为什么用TIM142.2 TIM14功能介绍2.3 一些配置参数解释2.4 PWM实现流程&中断2.4.1 非中断PWM输出(LED闪烁)2.4.2 中断PWM输出(LED呼吸灯) 3. STM32CubeMX配置3.1 GPIO配置3.2 时钟配置3.3 定时器相关参数配置3.4 Debug配置3.5 中…

C# Blazor 学习笔记(11):路由跳转和信息传值

文章目录 前言路由跳转测试用例路由传参/路由约束想法更新&#xff1a;2023年8月4日 前言 Blazor对路由跳转进行了封装。 ASP.NET Core Blazor 路由和导航 NavigationManager 类 本文的主要内容就是全局的跳转 路由跳转 路由跳转就要用到NavigationManager 类。 其实最常用…