图像处理库(Opencv, Matplotlib, PIL)以及三者之间的转换

文章目录

  • 1. Opencv
  • 2. Matplotlib
  • 3. PIL
  • 4. 三者的区别和相互转换
  • 5. Torchvision 中的相关转换库
    • 5.1 ToPILImage([mode])
    • 5.2 ToTensor
    • 5.3 PILToTensor

1. Opencv

opencv的基本图像类型可以和numpy数组相互转化,因此可以直接调用torch.from_numpy(img) 将图像转换成tensor

  • 读取: img=cv2.imread(path)
    OpenCV读取图像后返回的是一个代表图像的numpy.ndarray,采用的格式是(H,W,C),通道顺序为BGR, 取值范围[0,255], dtype=uint8
import cv2
def read_img_cv(path):img_cv=cv2.imread(path)return img_cv
  • 显示: cv2.imshow(name,img)
import cv2
def show_img_cv(img_cv):cv2.imshow("Image", img_cv)cv2.waitKey(0)  # 暂停显示图片,数字0代表按键后 0 ms执行
  • 保存: cv2.imwrite(path, img)
import cv2
def save_img_cv(img_cv,path):cv2.imwrite(path, img_cv)  # 保存图片

2. Matplotlib

matplotlib 是python仿照matlab绘图开发的图像绘制库。使用matplotlib绘图时,可以读取tesnornumpy数据类型。

  • 读取: img=mpimg.imread(path)

如果是灰度图:返回(H,W)形状的数组
如果是RGB图像,返回(H, W, 3) 形状的数组,图片通道顺序为RGB
如果是RGBA图像,返回(H.W, 4) 形状的数组, 图片通道顺序为RGBA

此外,PNG 图像以浮点数组 (0-1) dtype=float32的形式返回,所有其他格式都作为 int 型数组dtype=uint8返回,位深由具体图像决定。

import matplotlib.image as mpimg
def read_img_mat(path):img_mat=mpimg.imread(path)return img_mat
  • 显示: plt.imshow(img) plt.show()
  1. 显示彩色图
import matplotlib.pyplot as plt
# 如果在jupyter notebook中显示,需要添加如下一行代码
%matplotlib inlinedef show_img_mat(img_mat):plt.imshow(img_mat)plt.axis('off')plt.show()
  1. 显示灰度图
    matplotlib显示图像,默认以三通道显示图像,我们需要在plt.imshow()里添加参数gray
def show_img_gray(img_gray):plt.imshow(img_gray,cmap='gray')plt.axis('off')plt.show()
  1. 显示Image类型图片
def show_img_pil(img_pil):plt.imshow(img_pil)plt.axis('off')plt.show()
  • 保存: plt.imsave(name,img)
def save_img_pil(img_pil,name):plt.imsave(name,img_pil)

3. PIL

PIL是python对于图像处理的基本库。
图像的模式如下图,比如1: 二值图,L灰度图,P: 8位彩色图,RGB:24位彩色图(每个通道8位)例如jpg图像,RGBA : 相比RGB多了alpha通道(不透明度)例如png图像
可以使用img.convert(mode) 转换模式。
在这里插入图片描述

  • 读取: img=Image.open(path)
    读到的是一个PIL.xxxImageFIie的类型。
import PIL
from PIL import Image
def read_img_pil(path):img_pil=Image.open(path) # PIL Image 类型return img_pil
  • 显示:image.show()
def show_img_pil(img_pil):img_pil.show()
  • 保存: image.save(path)
def save_img_pil(img_pil,path):img_pil.save(path)

4. 三者的区别和相互转换


三者的区别

  • Opencv 的数据类型是Numpy数组,通道顺序为BGR
  • Matplotlib 的数据类型是Numpy数组, 通道顺序是RGB
  • PIL 的数据类型是PIL.Image类,通道顺序是RGB

三种图像处理库相互转换

  • OpencvMatplotlib之间的相互转换
# cv->mat
def cv2mat(img_cv):img_mat=cv2.cvtColor(img_cv,cv2.COLOR_BGR2RGB) # 将颜色通道从BGR改变成RGB# 另一种等价写法# img_mat=img_cv[:,:,::-1]return img_matdef mat2cv(img_mat): # 将颜色通道从RGB改变成BGRimg_cv=img_mat[:,:,::-1]return img_cv
  • MatplotlibPIL之间的相互转换
    np.asarry(img) img->array
    Image.fromarray(array) array->img
# mat->PIL
#方法1:三通道的转换
def mat2PIL_RGB(img_mat):img_pil=Image.fromarray(img_mat.astype('uint8'))# unit8 是无符号的8位整形,用astype [0,255]截断处理# 另外一种写法# img_pil= Image.fromarray(np.unit8(img_mat))return img_pil # 方法2: 四通道的转换
def mat2PIL_RGBA(img_mat):img_pil=Image.fromarray(img_mat.astype('uint8')).convert('RGB')return img_pil# 方法三:使用torchvision的库函数
from torchvision import transforms
def mat2PIL_trans(img_mat):trans=transformers.ToPILImage()img_pil=trans(img_mat)return img_pil'''PIL->mat'''def PIL2mat(img_pil):img_mat=np.array(img_pil) # 深拷贝# 如果是jpg格式,通道顺序是RGB, (H,W,3)# 如果是png格式,通道顺序是RGBA, (H,W,4)# 返回的类型均是`numpy.ndarray`, `dtype=unit8`, 取值返回[0,255]# 或者也可以采用浅拷贝# img_mat=np.asarray(img_pil)return img_mat'''区间变换'''
# [0,255]->[0,1] 
def PIL2mat_norm(img_pil):img_mat=np.asarray(img_pil)/255.0return img_mat
# [0,1]->[0,255]
def mat_255(img_mat):img_mat=(np.maximum(img_mat, 0) / img_mat.max()) * 255.0 img_mat=np.unit8(img_mat)
  • OpencvPIL之间的相互转换
# cv->PIL
#方法1:三通道的转换
def cv2PIL_RGB(img_cv):img_rgb = img_cv[:,:,::-1] # OpenCV 的通道顺序为 BGR, 转换成RGB# nparray img_pil= Image.fromarray(np.uint8(img_rgb))return img_pil # 方法2: 四通道的转换
def cv2PIL_RGBA(img_cv):img_rgb = img_cv[:,:,::-1]img_pil=Image.fromarray(img_rgb.astype('uint8')).convert('RGB')return img_pil# 方法三:使用torchvision的库函数
from torchvision import transforms
def cv2PIL_trans(img_cv):img_rgb = img_cv[:,:,::-1]trans=transformers.ToPILImage()img_pil=trans(img_rgb)return img_pil# PIL->cv
def PIL2cv(img_pil):img_ary=np.array(img_pil) # 深拷贝,通道顺序是 RGB, (H,W,C)# 或者也可以采用深拷贝# img_ary=np.asarray(img_pil)img_cv=img_ary[:,:,-1]return img_cv

三种格式和Tensor之间的相互转换

  • numpy格式转成Tensor
import torch
def nparray2tensor(npary):ts=torch.from_numpy(npary)# 如果需要修改成浮点类型# ts=torch.from_numpy(npary).float()return ts
  • PIL和numpy格式转成Tensor
    可以利用torchvision 中transforms.ToTensor()
    该函数可以将PIL 中的Image 或者 numpy.ndarray(dtype=unit8): 大小 (H,W,C) 、范围[0,255] 转化成torch.FloatTensor: 大小(C,H,W)、范围[0.0,1.0]
from torchvision import transforms
# img_pil: Image
trans=transforms.ToTensor() 
tens=trans(img_pil) # (C,H,W) [0.0,1,0]
# tens_hwc=tens.transpose((1,2,0))

5. Torchvision 中的相关转换库

5.1 ToPILImage([mode])

CLASS
torchvision.transforms.ToPILImage(mode=None)
  • 功能

    将tensor或ndarray转换为PIL图像——这不会缩放值。这个转换不支持torchscript。

    转换形状为C x H x Wtorch.*Tensor或形状为H x W x Cnumpy ndarrayPIL图像,同时保留值范围。

  • 参数

    • mode(PIL.Image mode) 输入数据的颜色空间和像素深度(可选)。mode为None时(默认)对输入数据有如下假设 :
      • 输入为4通道时,假设模式为RGBA。
      • 如果输入为3通道,则假设为RGB模式。
      • 输入为2路时,假设为LA模式。
      • 如果输入有1个通道,模式由数据类型(即int、float、short)确定。

5.2 ToTensor

CLASS
torchvision.transforms.ToTensor
  • 功能:

    将PIL图像或ndarray转换为tensor,并相应地缩放。这个转换不支持torchscript。

    转换PIL Image或在[0,255]区间内的numpy.ndarray (H x W x C)[0.0,1.0]区间内的torch.FloatTensor (C x H x W)。其中PIL Image属于其中一种模式(L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1);如果numpy.Ndarray的dtype = np.uint8
    在其他情况下,张量在不缩放的情况下返回。

5.3 PILToTensor

CLASS
torchvision.transforms.PILToTensor
  • 功能

    将PIL图像转换为相同类型的张量-这不会缩放值。这个转换不支持torchscript。

    PIL Image (H x W x C)转换为形状(C x H x W)的张量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/77658.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初识性能测试

✏️作者:银河罐头 📋系列专栏:JavaEE 🌲“种一棵树最好的时间是十年前,其次是现在” 目录 什么是性能测试?为什么要做性能测试?性能测试常见术语及性能测试衡量指标并发用户数响应时间/平均响应…

综合与新综合与新型交通发展趋势[75页PPT]

导读:原文《综合与新综合与新型交通发展趋势[75页PPT]》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 完整版领取方式 完整版领取方式: 如需…

JVM之类加载与字节码

1.类文件结构 一个简单的HelloWorld.Java package cn.itcast.jvm.t5; // HelloWorld 示例 public class HelloWorld { public static void main(String[] args) { System.out.println("hello world"); } }编译为 HelloWorld.class 后的样子如下所示: […

continue有什么作用

学习算法以来&#xff0c;break使用的比较多&#xff0c;continue使用的比较少&#xff0c;只知道break是跳出循环的作用,不知道continue有什么作用。 continue可以跳过本次循环&#xff0c;强制执行下一次循环。 比如这个代码 #include<iostream>using namespace std…

【C++】开源:Eigen3矩阵与线性代数库配置使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Eigen3矩阵与线性代数库配置使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&…

Kafka介绍

目录 1&#xff0c;kafka简单介绍 2&#xff0c;kafka使用场景 3&#xff0c;kafka基本概念 kafka集群 数据冗余 分区的写入 读取分区数据 顺序消费 顺序消费典型的应用场景&#xff1a; 批量消费 提交策略 kafka如何保证高并发 零拷贝技术&#xff08;netty&#…

微信小程序的自定义TabBar及Vant的使用

一、安装Vant 1、在 资源管理器 空白位置&#xff0c;点右键打开 在外部终端窗口打开 2、初始化NPM npm init -y 3、安装命令 npm i vant/weapp1.3.3 -S --production 4、构建NPM包 在 工具 里选择构建NPM包 5、删除style:v2 在app.json里&#xff0c;删除"style"…

AutoDL从0到1搭建stable-diffusion-webui

前言 AI绘画当前非常的火爆&#xff0c;随着Stable diffusion&#xff0c;Midjourney的出现将AI绘画推到顶端&#xff0c;各大行业均受其影响&#xff0c;离我们最近的AI绘画当属Stable diffusion&#xff0c;可本地化部署&#xff0c;只需电脑配备显卡即可完成AI绘画工作&…

宝塔面板Mysql数据库无法启动(已解决)

1、错误排查 Mysql 无法正常启动直接使用官方提供的脚本检查出错 wget -O sql-repair.sh http://download.bt.cn/install/sql-repair.sh && sh sql-repair.shwget -O sql-repair.sh http://download.bt.cn/install/sql-repair.sh && sh sql-repair.sh 打印出…

arcgis--数据库构建网络数据集

1、打开arcmap软件&#xff0c;导入数据&#xff0c;如下&#xff1a; 该数据已经过处理&#xff0c;各交点处均被打断&#xff0c;并进行了拓扑检查。 2、在文件夹下新建文件数据库&#xff0c;名称为路网&#xff0c;在数据库下新建要素类&#xff0c;并导入道路shp文件&…

【项目 计网1】4.1 网络结构模式 4.2MAC地址、IP地址、端口

文章目录 第四章 Linux网络编程4.1 网络结构模式C/S结构&#xff08;client-server&#xff09;B/S结构&#xff08;Browser/Server&#xff0c;浏览器/服务器模式&#xff09; 4.2 4.3MAC地址、IP地址、端口&#xff08;1&#xff09;&#xff08;2&#xff09;MAC地址IP地址(…

关于win11 debian wsl 子系统安装启动docker一直starting,无法启动

首先我先说明&#xff0c;我的步骤都是按照官网步骤来的 通过官网的操作步骤 通过测试命令 sudo docker run hello-world得到下面的命令&#xff0c;我们通过启动命令 sudo service docker start 执行结果如下图 也就是说无法启动&#xff0c;一直显示在启动中 遇到这种情况…

什么是多运行时架构?

服务化演进中的问题 自从数年前微服务的概念被提出&#xff0c;到现在基本成了技术架构的标配。微服务的场景下衍生出了对分布式能力的大量需求&#xff1a;各服务之间需要相互协作和通信&#xff0c;以及共享状态等等&#xff0c;因此就有了各种中间件来为业务服务提供这种分…

深度学习(35)—— StarGAN(2)

深度学习&#xff08;34&#xff09;—— StarGAN&#xff08;2&#xff09; 完整项目在这里&#xff1a;欢迎造访 文章目录 深度学习&#xff08;34&#xff09;—— StarGAN&#xff08;2&#xff09;1. build model&#xff08;1&#xff09;generator&#xff08;2&#…

K8S 部署 RocketMQ

文章目录 添加模板部署本地访问 集群使用 kubesphere 作为工具 添加模板 添加 helm 模板 helm repo add rocketmq-repo https://helm-charts.itboon.top/rocketmq helm repo update rocketmq-repo编写 value.yaml 文件 配置主从节点的个数&#xff0c;例子为单节点 broker:…

使用langchain与你自己的数据对话(四):问答(question answering)

之前我已经完成了使用langchain与你自己的数据对话的前三篇博客&#xff0c;还没有阅读这三篇博客的朋友可以先阅读一下&#xff1a; 使用langchain与你自己的数据对话(一)&#xff1a;文档加载与切割使用langchain与你自己的数据对话(二)&#xff1a;向量存储与嵌入使用langc…

动画制作选择Blender还是Maya

Blender和Maya是两种最广泛使用的 3D 建模和动画应用程序。许多经验丰富的用户表示&#xff0c;Blender 在雕刻工具方面远远领先于 Maya&#xff0c;并且在 3D 建模方面达到了相同的质量水平。对于刚接触动画行业的人来说&#xff0c;您可能会问“我应该使用 Blender 还是 Maya…

Docker入门——保姆级

Docker概述 ​ —— Notes from WAX through KuangShen 准确来说&#xff0c;这是一篇学习笔记&#xff01;&#xff01;&#xff01; Docker为什么出现 一款产品&#xff1a;开发—上线 两套环境&#xff01;应用环境如何铜鼓&#xff1f; 开发 – 运维。避免“在我的电脑…

Windows测试模式打开/关闭 C++ Windows驱动开发

Windows测试模式打开 管理员身份运行CMD 2.输入&#xff1a;bcdedit /set testsigning on 重启计算机 右下角显示&#xff1a; 测试模式成功开启 Windows测试模式关闭 同理&#xff0c;第二步修改为&#xff1a; 重启后右下角&#xff1a; 没有测试模式显示&#xff0c;关闭…

学C的第三十二天【动态内存管理】

相关代码gitee自取&#xff1a;C语言学习日记: 加油努力 (gitee.com) 接上期&#xff1a; 学C的第三十一天【通讯录的实现】_高高的胖子的博客-CSDN博客 1 . 为什么存在动态内存分配 学到现在认识的内存开辟方式有两种&#xff1a; 创建变量&#xff1a; int val …