Flink State 和 Fault Tolerance详解

有状态操作或者操作算子在处理DataStream的元素或者事件的时候需要存储计算的中间状态,这就使得状态在整个Flink的精细化计算中有着非常重要的地位:

  • 记录数据从某一个过去时间点到当前时间的状态信息。
  • 以每分钟/小时/天汇总事件时,状态将保留待处理的汇总记录。
  • 在训练机器学习模型时,状态将保持当前版本的模型参数。

Flink在管理状态方面,使用Checkpoint和Savepoint实现状态容错。Flink的状态在计算规模发生变化的时候,可以自动在并行实例间实现状态的重新分发,底层使用State Backend策略存储计算状态,State Backend决定了状态存储的方式和位置(后续章节介绍)。

Flink在状态管理中将所有能操作的状态分为Keyed StateOperator State,其中Keyed State类型的状态同key一一绑定,并且只能在KeyedStream中使用。所有non-KeyedStream状态操作都叫做Operator State。Flink在底层做状态管理时,将Keyed State和<parallel-operator-instance, key>关联,由于某一个key仅仅落入其中一个operator-instance中,因此可以简单的理解Keyed State是和<operator,key>进行绑定的,采用Key Group机制对Keyed State进行管理或者分类,所有的keyed-operator在做状态操作的时候可能需要和1~n个Key Group进行交互。

Flink在分发Keyed State状态的时候,不是以key为单位,而是以Key Group为最小单元分发

Operator State (也称为 non-keyed state),每一个operator state 会和一个parallel operator instance进行绑定。Keyed StateOperator State 以两种形式存在( managed(管理)和 raw(原生)),所有Flink已知的操作符都支持Managed State,但是Raw State仅仅在用户自定义Operator时使用,并且不支持在并行度发生变化的时候重新分发状态,因此,虽然Flink支持Raw State,但是在绝大多数的应用场景下,一般使用的都是Managed State。

Keyed State

Keyed-state接口提供对不同类型状态的访问,所有状态都限于当前输入元素的key。

类型说明方法
ValueState这个状态主要存储一个可以用作更新的值update(T)
T value()
clear()
ListState这将存储List集合元素add(T)
addAll(List)
Iterable get()
update(List)
clear()
ReducingState这将保留一个值,该值表示添加到状态的所有值的汇总
需要用户提供ReduceFunction
add(T)
T get()
clear()
AggregatingState<IN, OUT>这将保留一个值,该值表示添加到状态的所有值的汇总
需要用户提供AggregateFunction
add(IN)
T get()
clear()
FoldingState<T, ACC>这将保留一个值,该值表示添加到状态的所有值的汇总
需要用户提供FoldFunction
add(IN)
T get()
clear()
MapState<UK, UV>这个状态会保留一个Map集合元素put(UK, UV)
putAll(Map<UK, UV>)
entries()
keys()
values()
clear()

ValueSate

var env=StreamExecutionEnvironment.getExecutionEnvironment
env.socketTextStream("centos",9999)
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.map(new RichMapFunction[(String,Int),(String,Int)] {var vs:ValueState[Int]=_override def open(parameters: Configuration): Unit = {val vsd=new ValueStateDescriptor[Int]("valueCount",createTypeInformation[Int])vs=getRuntimeContext.getState[Int](vsd)}override def map(value: (String, Int)): (String, Int) = {val histroyCount = vs.value()val currentCount=histroyCount+value._2vs.update(currentCount)(value._1,currentCount)}
}).print()
env.execute("wordcount")

AggregatingState<IN, OUT>

var env=StreamExecutionEnvironment.getExecutionEnvironment
env.socketTextStream("centos",9999)
.map(_.split("\\s+"))
.map(ts=>(ts(0),ts(1).toInt))
.keyBy(0)
.map(new RichMapFunction[(String,Int),(String,Double)] {var vs:AggregatingState[Int,Double]=_override def open(parameters: Configuration): Unit = {val vsd=new AggregatingStateDescriptor[Int,(Double,Int),Double]("avgCount",new AggregateFunction[Int,(Double,Int),Double] {override def createAccumulator(): (Double, Int) = {(0.0,0)}override def add(value: Int, accumulator: (Double, Int)): (Double, Int) = {(accumulator._1+value,accumulator._2+1)}override def merge(a: (Double, Int), b: (Double, Int)): (Double, Int) = {(a._1+b._1,a._2+b._2)}override def getResult(accumulator: (Double, Int)): Double = {accumulator._1/accumulator._2}},createTypeInformation[(Double,Int)])vs=getRuntimeContext.getAggregatingState(vsd)}override def map(value: (String, Int)): (String, Double) = {vs.add(value._2)val avgCount=vs.get()(value._1,avgCount)}
}).print()
env.execute("wordcount")

MapState<UK, UV>

var env=StreamExecutionEnvironment.getExecutionEnvironment
//001 zs 202.15.10.12 日本 2019-10-10
env.socketTextStream("centos",9999)
.map(_.split("\\s+"))
.map(ts=>Login(ts(0),ts(1),ts(2),ts(3),ts(4)))
.keyBy("id","name")
.map(new RichMapFunction[Login,String] {var vs:MapState[String,String]=_override def open(parameters: Configuration): Unit = {val msd=new MapStateDescriptor[String,String]("mapstate",createTypeInformation[String],createTypeInformation[String])vs=getRuntimeContext.getMapState(msd)}override def map(value: Login): String = {println("历史登录")for(k<- vs.keys().asScala){println(k+" "+vs.get(k))}var result=""if(vs.keys().iterator().asScala.isEmpty){result="ok"}else{if(!value.city.equalsIgnoreCase(vs.get("city"))){result="error"}else{result="ok"}}vs.put("ip",value.ip)vs.put("city",value.city)vs.put("loginTime",value.loginTime)result}
}).print()
env.execute("wordcount")

总结

new Rich[Map|FaltMap]Function {var vs:XxxState=_ //状态声明override def open(parameters: Configuration): Unit = {val xxd=new XxxStateDescription //完成状态的初始化vs=getRuntimeContext.getXxxState(xxd)}override def xxx(value: Xx): Xxx = {//状态操作}
}
  • ValueState<T> getState(ValueStateDescriptor<T>)
  • ReducingState<T> getReducingState(ReducingStateDescriptor<T>)
  • ListState<T> getListState(ListStateDescriptor<T>)
  • AggregatingState<IN, OUT> getAggregatingState(AggregatingStateDescriptor<IN, ACC, OUT>)
  • FoldingState<T, ACC> getFoldingState(FoldingStateDescriptor<T, ACC>)
  • MapState<UK, UV> getMapState(MapStateDescriptor<UK, UV>)

State Time-To-Live(TTL)

基本使用

可以将state存活时间(TTL)分配给任何类型的keyed-state,如果配置了TTL且状态值已过期,则Flink将尽力清除存储的历史状态值。

import org.apache.flink.api.common.state.StateTtlConfig
import org.apache.flink.api.common.state.ValueStateDescriptor
import org.apache.flink.api.common.time.Timeval ttlConfig = StateTtlConfig.newBuilder(Time.seconds(1)).setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite).setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired).build
val stateDescriptor = new ValueStateDescriptor[String]("text state", classOf[String])
stateDescriptor.enableTimeToLive(ttlConfig)
  • 案例
var env=StreamExecutionEnvironment.getExecutionEnvironment
env.socketTextStream("centos",9999)
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.map(new RichMapFunction[(String,Int),(String,Int)] {var vs:ValueState[Int]=_override def open(parameters: Configuration): Unit = {val vsd=new ValueStateDescriptor[Int]("valueCount",createTypeInformation[Int])val ttlConfig = StateTtlConfig.newBuilder(Time.seconds(5)) //过期时间5s.setUpdateType(UpdateType.OnCreateAndWrite)//创建和修改的时候更新过期时间.setStateVisibility(StateVisibility.NeverReturnExpired)//永不返回过期的数据.build()vsd.enableTimeToLive(ttlConfig)vs=getRuntimeContext.getState[Int](vsd)}override def map(value: (String, Int)): (String, Int) = {val histroyCount = vs.value()val currentCount=histroyCount+value._2vs.update(currentCount)(value._1,currentCount)}
}).print()
env.execute("wordcount")

注意:开启TTL之后,系统会额外消耗内存存储时间戳(Processing Time),如果用户以前没有开启TTL配置,在启动之前修改代码开启了TTL,在做状态恢复的时候系统启动不起来,会抛出兼容性失败以及StateMigrationException的异常。

清除Expired State

在默认情况下,仅当明确读出过期状态时,通过调用ValueState.value()方法才会清除过期的数据,这意味着,如果系统一直未读取过期的状态,则不会将其删除,可能会导致存储状态数据的文件持续增长。

Cleanup in full snapshot

系统会从上一次状态恢复的时间点,加载所有的State快照,在加载过程中会剔除那些过期的数据,这并不会影响磁盘已存储的状态数据,该状态数据只会在Checkpoint的时候被覆盖,但是依然解决不了在运行时自动清除过期且没有用过的数据。

import org.apache.flink.api.common.state.StateTtlConfig
import org.apache.flink.api.common.time.Time
val ttlConfig = StateTtlConfig.newBuilder(Time.seconds(1)).cleanupFullSnapshot.build

只能用于memory或者snapshot状态的后端实现,不支持RocksDB State Backend。

Cleanup in background

可以开启后台清除策略,根据State Backend采取默认的清除策略(不同状态的后端存储,清除策略不同)

import org.apache.flink.api.common.state.StateTtlConfig
val ttlConfig = StateTtlConfig
.newBuilder(Time.seconds(1))
.cleanupInBackground
.build
  • Incremental cleanup(基于内存backend)
import org.apache.flink.api.common.state.StateTtlConfig
val ttlConfig = StateTtlConfig.newBuilder(Time.seconds(5))
.setUpdateType(UpdateType.OnCreateAndWrite)
.setStateVisibility(StateVisibility.NeverReturnExpired)
.cleanupIncrementally(100,true) //默认值 5 | false
.build()

第一个参数表示每一次触发cleanup的时候,系统会一次处理100个元素。第二个参数是false,表示只要用户对任意一个state进行操作,系统都会触发cleanup策略;第二个参数是true,表示只要系统接收到记录数(即使用户没有操作状态)就会触发cleanup策略。

  • RocksDB compaction

RocksDB是一个嵌入式的key-value存储,其中key和value是任意的字节流,底层进行异步压缩,会将key相同的数据进行compact(压缩),以减少state文件大小,但是并不对过期的state进行清理,因此可以通过配置compactFilter,让RocksDB在compact的时候对过期的state进行排除,RocksDB数据库的这种过滤特性,默认关闭,如果想要开启,可以在flink-conf.yaml中配置 state.backend.rocksdb.ttl.compaction.filter.enabled:true 或者在应用程序的API里设置RocksDBStateBackend::enableTtlCompactionFilter。

在这里插入图片描述

import org.apache.flink.api.common.state.StateTtlConfig 
val ttlConfig = StateTtlConfig.newBuilder(Time.seconds(5))
.setUpdateType(UpdateType.OnCreateAndWrite)
.setStateVisibility(StateVisibility.NeverReturnExpired)
.cleanupInRocksdbCompactFilter(1000) //默认配置1000
.build()

这里的1000表示,系统在做Compact的时候,会检查1000个元素是否失效,如果失效,则清除该过期数据。

Operator State

如果用户想要使用Operator State,只需要实现通用的CheckpointedFunction 接口或者ListCheckpointed<T extends Serializable>,值得注意的是,目前的operator-state仅仅支持list-style风格的状态,要求所存储的状态必须是一个List,且其中的元素必须可以序列化。

CheckpointedFunction

提供两种不同的状态分发方案:Even-splitUnion

void snapshotState(FunctionSnapshotContext context) throws Exception;
void initializeState(FunctionInitializationContext context) throws Exception;
  • snapshotState():调用checkpoint()的时候,系统会调用snapshotState()对状态做快照
  • initializeState():第一次启动或者从上一次状态恢复的时候,系统会调用initializeState()

Even-split:表示系统在故障恢复时,会将operator-state的元素均分给所有的operator实例,每个operator实例将获取到整个operator-state的sub-list数据。

Union:表示系统在故障恢复时,每一个operator实例可以获取到整个operator-state的全部数据。

案例

class BufferingSink(threshold: Int = 0) extends SinkFunction[(String, Int)]  with CheckpointedFunction  {var listState:ListState[(String,Int)]=_val bufferedElements = ListBuffer[(String, Int)]()//负责将数据输出到外围系统override def invoke(value: (String, Int)): Unit = {bufferedElements += valueif(bufferedElements.size == threshold){for(ele <- bufferedElements){println(ele)}bufferedElements.clear()}}//是在savepoint|checkpoint时候将数据持久化override def snapshotState(context: FunctionSnapshotContext): Unit = {listState.clear()for(ele <- bufferedElements){listState.add(ele)}}//状态恢复|初始化 创建状态override def initializeState(context: FunctionInitializationContext): Unit = {val lsd = new ListStateDescriptor[(String, Int)]("buffered-elements",createTypeInformation[(String,Int)])listState=context.getOperatorStateStore.getListState(lsd)if(context.isRestored){for(element <- listState.get().asScala) {bufferedElements += element}}}
}
var env=StreamExecutionEnvironment.getExecutionEnvironment
env.socketTextStream("centos",9999)
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.sum(1)
.addSink(new BufferingSink(5))
env.execute("testoperatorstate")
  • 启动netcat服务
[root@centos ~]# nc -lk 9999
  • 提交任务

在这里插入图片描述

注意,将并行度设置为1,方便测试

  • 在netcat中输入以下数据
[root@centos ~]# nc -lk 9999
a1 b1 c1 d1
  • 取消任务,并且创建savepoint
[root@centos flink-1.8.1]# ./bin/flink list -m centos:8081
------------------ Running/Restarting Jobs -------------------
17.10.2019 09:49:20 : f21795e74312eb06fbf0d48cb8d90489 : testoperatorstate (RUNNING)
--------------------------------------------------------------
[root@centos flink-1.8.1]# ./bin/flink cancel -m centos:8081 -s hdfs:///savepoints f21795e74312eb06fbf0d48cb8d90489
Cancelling job f21795e74312eb06fbf0d48cb8d90489 with savepoint to hdfs:///savepoints.
Cancelled job f21795e74312eb06fbf0d48cb8d90489. Savepoint stored in hdfs://centos:9000/savepoints/savepoint-f21795-38e7beefe07b.

注意,如果Flink需要和Hadoop整合,必须保证在当前环境变量下有HADOOP_HOME|HADOOP_CALSSPATH

[root@centos flink-1.8.1]# cat /root/.bashrc
HADOOP_HOME=/usr/hadoop-2.9.2
JAVA_HOME=/usr/java/latest
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
CLASSPATH=.
export JAVA_HOME
export PATH
export CLASSPATH
export HADOOP_HOME
HADOOP_CLASSPATH=`hadoop classpath`
export HADOOP_CLASSPATH
  • 测试状态

在这里插入图片描述

ListCheckpointed

ListCheckpointed接口是CheckpointedFunction接口的一种变体形式,仅仅支持Even-split状态的分发策略。

List<T> snapshotState(long checkpointId, long timestamp) throws Exception;
void restoreState(List<T> state) throws Exception;
  • snapshotState():调用checkpoint()的时候,系统会调用snapshotState()对状态做快照
  • restoreState():等价于上述CheckpointedFunction中声明的initializeState()方法,用作状态恢复

案例

import java.lang.{Long => JLong} //修改类别名
import scala.{Long => SLong} //修改类别名
class CustomStatefulSourceFunction extends ParallelSourceFunction[SLong] with ListCheckpointed[JLong]{@volatilevar isRunning:Boolean = truevar offset = 0Loverride def run(ctx: SourceFunction.SourceContext[SLong]): Unit = {val lock = ctx.getCheckpointLockwhile(isRunning){Thread.sleep(1000)lock.synchronized({ctx.collect(offset)offset += 1})}}override def cancel(): Unit = {isRunning=false}override def snapshotState(checkpointId: Long, timestamp: Long): util.List[JLong] = {Collections.singletonList(offset) //存储的是 当前source的偏移量,如果状态不可拆分,用户可以使Collections.singletonList}override def restoreState(state: util.List[JLong]): Unit = {for (s <- state.asScala) {offset = s}}
}
var env=StreamExecutionEnvironment.getExecutionEnvironment
env.addSource[Long](new CustomStatefulSourceFunction)
.print("offset:")
env.execute("testOffset")

广播状态

支持Operator State的第三种类型是广播状态。引入广播状态以支持用例,其中需要将来自一个流的某些数据广播到所有下游任务,广播的状态将存储在本地,用于处理另一个流上所有传入的元素。

A third type of supported operator state is the Broadcast State. Broadcast state was introduced to support use cases where some data coming from one stream is required to be broadcasted to all downstream tasks, where it is stored locally and is used to process all incoming elements on the other stream.

non-keyed

import org.apache.flink.api.common.state.MapStateDescriptor
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction
import org.apache.flink.util.Collector
import scala.collection.JavaConverters._
class UserBuyPathBroadcastProcessFunction(msd:MapStateDescriptor[String,Int]) extends BroadcastProcessFunction[UserBuyPath,Rule,String]{//处理的是UserBuyPath,读取广播状态override def processElement(value: UserBuyPath,ctx: BroadcastProcessFunction[UserBuyPath, Rule, String]#ReadOnlyContext,out: Collector[String]): Unit = {val broadcastState = ctx.getBroadcastState(msd)if(broadcastState.contains(value.channel)){//如果有规则,尝试计算val threshold= broadcastState.get(value.channel)if(value.path >= threshold){//将满足条件的用户信息输出out.collect(value.id+" "+value.name+" "+value.channel+" "+value.path)}}}//处理的是规则 Rule 数据 ,记录修改广播状态override def processBroadcastElement(value: Rule, ctx: BroadcastProcessFunction[UserBuyPath, Rule, String]#Context,out: Collector[String]): Unit = {val broadcastState = ctx.getBroadcastState(msd)broadcastState.put(value.channel,value.threshold)//更新状态println("=======rule======")for(entry <- broadcastState.entries().asScala){println(entry.getKey+"\t"+entry.getValue)}println()println()}
}
var env=StreamExecutionEnvironment.getExecutionEnvironment
// id name channel action
// 001 mack 手机 view
// 001 mack 手机 view
// 001 mack 手机 addToCart
// 001 mack 手机 buy
val userStream = fsEnv.socketTextStream("centos", 9999).map(line => line.split("\\s+")).map(ts => UserAction(ts(0), ts(1), ts(2), ts(3))).keyBy("id", "name").map(new UserActionRichMapFunction)val msd=new MapStateDescriptor[String,Int]("braodcast-sate",createTypeInformation[String],createTypeInformation[Int])
// channel 阈值
// 手机类   10
val broadcastStream: BroadcastStream[Rule] = fsEnv.socketTextStream("centos", 8888).map(line => line.split("\\s+")).map(ts => Rule(ts(0), ts(1).toInt)).broadcast(msd)userStream.connect(broadcastStream)
.process(new UserBuyPathBroadcastProcessFunction(msd))
.print()
env.execute("testoperatorstate")
case class Rule(channel:String,threshold:Int)
case class UserAction(id:String,name:String ,channel:String,action:String)
case class UserBuyPath(id:String,name:String,channel:String,path:Int)
class UserActionRichMapFunction extends RichMapFunction[UserAction,UserBuyPath]{var buyPathState:MapState[String,Int]=_override def open(parameters: Configuration): Unit = {val msd= new MapStateDescriptor[String,Int]("buy-path",createTypeInformation[String],createTypeInformation[Int])buyPathState=getRuntimeContext.getMapState(msd)}override def map(value: UserAction): UserBuyPath = {val channel = value.channelvar path=0if(buyPathState.contains(channel)){path=buyPathState.get(channel)}if(value.action.equals("buy")){buyPathState.remove(channel)}else{buyPathState.put(channel,path+1)}UserBuyPath(value.id,value.name,value.channel,buyPathState.get(channel))}
}

keyed

class UserBuyPathKeyedBroadcastProcessFunction(msd:MapStateDescriptor[String,Int]) extends KeyedBroadcastProcessFunction[String,UserAction,Rule,String]{override def processElement(value: UserAction,ctx: KeyedBroadcastProcessFunction[String, UserAction, Rule, String]#ReadOnlyContext,out: Collector[String]): Unit = {println("value:"+value +" key:"+ctx.getCurrentKey)println("=====state======")for(entry <- ctx.getBroadcastState(msd).immutableEntries().asScala){println(entry.getKey+"\t"+entry.getValue)}}override def processBroadcastElement(value: Rule, ctx: KeyedBroadcastProcessFunction[String, UserAction, Rule, String]#Context, out: Collector[String]): Unit = {println("Rule:"+value)//更新状态ctx.getBroadcastState(msd).put(value.channel,value.threshold)}
}
case class Rule(channel:String,threshold:Int)
case class UserAction(id:String,name:String ,channel:String,action:String)
var env=StreamExecutionEnvironment.getExecutionEnvironment
// id name channel action
// 001 mack 手机 view
// 001 mack 手机 view
// 001 mack 手机 addToCart
// 001 mack 手机 buy
val userKeyedStream = env.socketTextStream("centos", 9999)
.map(line => line.split("\\s+"))
.map(ts => UserAction(ts(0), ts(1), ts(2), ts(3)))
.keyBy(0)//只可以写一个参数val msd=new MapStateDescriptor[String,Int]("braodcast-sate",createTypeInformation[String],createTypeInformation[Int])
// channel 阈值
// 手机类 10
// 电子类 10
val broadcastStream: BroadcastStream[Rule] = fsEnv.socketTextStream("centos", 8888)
.map(line => line.split("\\s+"))
.map(ts => Rule(ts(0), ts(1).toInt))
.broadcast(msd)
userKeyedStream.connect(broadcastStream)
.process(new UserBuyPathKeyedBroadcastProcessFunction(msd))
.print()
env.execute("testoperatorstate")

CheckPoint & SavePoint

CheckPoint是Flink实现故障容错的一种机制,系统会根据配置的检查点定期自动对程序计算状态进行备份。一旦程序在计算过程中出现故障,系统会选择一个最近的检查点进行故障恢复。

SavePoint是一种有效的运维手段,需要用户手动触发程序进行状态备份,本质也是在做CheckPoint。

实现故障恢复的先决条件:

  • 持久的数据源,可以在一定时间内重播记录(例如,FlinkKafkaConsumer)
  • 状态的永久性存储,通常是分布式文件系统(例如,HDFS)
var env=StreamExecutionEnvironment.getExecutionEnvironment
//启动检查点机制
env.enableCheckpointing(5000,CheckpointingMode.EXACTLY_ONCE)
//配置checkpoint必须在2s内完成一次checkpoint,否则检查点终止
env.getCheckpointConfig.setCheckpointTimeout(2000)
//设置checkpoint之间时间间隔 <=  Checkpoint interval
env.getCheckpointConfig.setMinPauseBetweenCheckpoints(5)
//配置checkpoint并行度,不配置默认1
env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
//一旦检查点不能正常运行,Task也将终止
env.getCheckpointConfig.setFailOnCheckpointingErrors(true)
//将检查点存储外围系统 filesystem、rocksdb,可以配置在cancel任务时候,系统是否保留checkpoint
env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
val props = new Properties()
props.setProperty("bootstrap.servers", "centos:9092")
props.setProperty("group.id", "g1")
env.addSource(new FlinkKafkaConsumer[String]("topic01",new SimpleStringSchema(),props))
.flatMap(line => line.split("\\s+"))
.map((_,1))
.keyBy(0) //只可以写一个参数
.sum(1)
.print()
env.execute("testoperatorstate")

State Backend

State Backend决定Flink如何存储系统状态信息(Checkpoint形式),目前Flink提供了三种State Backend实现。

  • Memory (JobManagwer):这是Flink的默认实现,通常用于测试,系统会将计算状态存储在JobManager的内存中,但是在实际的生产环境中,由于计算的状态比较多,使用Memory 很容易导致OOM(out of memory)。
  • FileSystem:系统会将计算状态存储在TaskManager的内存中,因此一般用作生产环境,系统会根据CheckPoin机制,将TaskManager状态数据在文件系统上进行备份。如果是超大规模集群,TaskManager内存也可能发生溢出。
  • RocksDB:系统会将计算状态存储在TaskManager的内存中,如果TaskManager内存不够,系统可以使用RocksDB配置本地磁盘完成状态的管理,同时支持将本地的状态数据备份到远程文件系统,因此,RocksDB Backend 是推荐的选择。

参考:https://ci.apache.org/projects/flink/flink-docs-release-1.9/ops/state/state_backends.html

每一个Job都可以配置自己状态存储的后端实现

var env=StreamExecutionEnvironment.getExecutionEnvironment
val fsStateBackend:StateBackend = new FsStateBackend("hdfs:///xxx") //MemoryStateBackend、FsStateBackend、RocksDBStateBackend
env.setStateBackend(fsStateBackend)

如果用户不配置,则系统使用默认实现,默认实现可以通过修改flink-conf-yaml文件进行配置

[root@centos ~]# cd /usr/flink-1.8.1/
[root@centos flink-1.8.1]# vi conf/flink-conf.yaml
#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================
# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled.
#
# Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
# <class-name-of-factory>.
#state.backend: rocksdb
# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#state.checkpoints.dir: hdfs:///flink-checkpoints
# Default target directory for savepoints, optional.
#state.savepoints.dir: hdfs:///flink-savepoints# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend).
#state.backend.incremental: true

注意,必须在环境变量中出现HADOOP_CLASSPATH

Flink计算发布之后是否还能够修改计算算子?

首先,这在Spark中是不允许的,因为Spark会持久化代码片段,一旦修改代码,必须删除Checkpoint,但是Flink仅仅存储各个算子的计算状态,如果用户修改代码,需要用户在有状态的操作算子上指定uid属性。

env.addSource(new FlinkKafkaConsumer[String]("topic01",new SimpleStringSchema(),props))
.uid("kakfa-consumer")
.flatMap(line => line.split("\\s+"))
.map((_,1))
.keyBy(0) //只可以写一个参数
.sum(1)
.uid("word-count") //唯一
.map(t=>t._1+"->"+t._2)
.print()

Flink Kafka如何保证精准一次的语义操作?

  • https://www.cnblogs.com/ooffff/p/9482873.html
  • https://www.jianshu.com/p/8cf344bb729a
  • https://www.jianshu.com/p/de35bf649293
  • https://blog.csdn.net/justlpf/article/details/80292375
  • https://www.jianshu.com/p/c0af87078b9c (面试题)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/79699.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv-34 图像平滑处理-2D 卷积 cv2.filter2D()

2D卷积是一种图像处理和计算机视觉中常用的操作&#xff0c;用于在图像上应用滤波器或卷积核&#xff0c;从而对图像进行特征提取、平滑处理或边缘检测等操作。 在2D卷积中&#xff0c;图像和卷积核都是二维的矩阵或数组。卷积操作将卷积核在图像上滑动&#xff0c;对每个局部区…

CASAIM与迈普医学合作,基于CT数据三维重建和设计,在医疗辅具研究开发中实现高精度三维建模和偏差比对

近期&#xff0c;CASAIM与广州迈普再生医学科技股份有限公司&#xff08;简称&#xff1a;迈普医学&#xff09;合作&#xff0c;基于CT数据三维重建和设计&#xff0c;在医疗辅具研究开发中实现高精度三维建模和偏差比对&#xff0c;实现与缺损区域的精确匹配。 迈普医学&…

Zhang-Suen骨架提取算法

前言 本专栏针对的目标物体为物体裂缝量化&#xff0c;提取裂缝的骨架有助于裂缝长度的求解&#xff0c;故这一篇也是本专栏的开篇。 细化算法选择与分析 裂缝骨架的提取是十分有必要&#xff0c;如果我们能够得到裂缝的骨架图那么就很容易获得整条裂缝的长度。在当前经典的…

政府大数据资源中心建设总体方案[56页PPT]

导读&#xff1a;原文《政府大数据资源中心建设总体方案[56页PPT]》&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。 完整版领取方式 完整版领取方式&#xff1a; 如需…

decimal类型在MySQL中的正确使用 (长度和小数点)

1. MySQL(decimal) 对应 Java(BigDecimal) 2. decimal(16,2) MySQL中类型的设置, 长度16, 保留2位小数 3. 如果长度小于14, 则会出现没小数位的情况

数据采集的方法有哪些?

近年来&#xff0c;国家和各大企业都在部署大数据战略。“大数据”这个词也越来越频繁地出现在我们的生活中。当我们在进行网上冲浪时&#xff0c;页面总会跳出我们想要搜索的相关产品或关联事物。大数据&#xff0c;似乎总是能够“算”出我们“心中所想”。那么&#xff0c;大…

C++QT教程1——QT概述(下载与安装)

文章目录 1 Qt概述1.1 什么是Qt1.2 Qt的发展史1.3 Qt版本1.4 Qt的下载与安装下载地址&#xff1a;其实我是有点懵逼的&#xff0c;因为还有个qtcreator&#xff0c;我差点不知道下哪个。。。&#xff08;qt框架比qtcreator功能更多更强大&#xff09; 安装 1.5 Qt的优点1.6 QT成…

侯捷 C++面向对象编程笔记——9 复合 委托

9 复合 委托 9.1 Composition 复合 类似于c中结构里有结构——class里有class deque 是一个已经存在的功能很多的类&#xff08;两头进出的队列&#xff09;&#xff1b;利用deque的功能来实现queue的多种操作 该例只是复合的一种情况——设计模式 Adapter 9.1.1 复合下的构造…

十四、ESP32播放音乐

1. 运行效果 2. 硬件电路 3. 代码 test.wav文件下载地址:

《向量数据库指南》——Rockset 为实时数据库添加向量嵌入支持(一)

2023年4月18日,数据库供应商 Rockset 公布了对向量嵌入的支持,此举旨在使用户能够实时搜索和操作任何类型的数据。 位于加利福尼亚州圣马特奥的 Rockset 以前支持结构化和半结构化数据,让用户可以使用 SQL 和 NoSQL 实时搜索和分析数据。 现在,通过增加对向量嵌入的支持…

网页版Java五子棋项目(一)websocket【服务器给用户端发信息】

网页版Java五子棋项目&#xff08;一&#xff09;websocket【服务器给用户端发信息】 一、为什么要用websocket二、websocket介绍原理解析 三、代码演示1. 创建后端api&#xff08;TestAPI&#xff09;新增知识点&#xff1a;extends TextWebSocketHandler重写各种方法 2. 建立…

【JVM】垃圾回收 ——自问自答2

Q: System.gc() 的理解 System.gc()底层调用的是 Runtime.getRuntime.gc(),会现实出发FullGC。 但是&#xff0c;它的调用附带一个免责声明&#xff0c;无法保证对垃圾收集器的调用。 Q&#xff1a; 内存溢出和内存泄漏&#xff1f; 内存溢出&#xff1a; 简而言之&#xf…

windows为nginx添加定时任务(开机延迟启动)

windows开机启动任务 调用定时任务管理器选中windows创建基本任务设置名称和描述设置触发器 并且添加个延迟触发设置操作设置条件配置设置 调用定时任务管理器 winr 输入 taskschd.msc回车 选中windows创建基本任务 设置名称和描述 设置触发器 并且添加个延迟触发 设置操作 …

Aligning Large Language Models with Human: A Survey

本文也是LLM相关的综述文章&#xff0c;针对《Aligning Large Language Models with Human: A Survey》的翻译。 对齐人类与大语言模型&#xff1a;综述 摘要1 引言2 对齐数据收集2.1 来自人类的指令2.1.1 NLP基准2.1.2 人工构造指令 2.2 来自强大LLM的指令2.2.1 自指令2.2.2 …

离散 Hopfield 神经网络的分类与matlab实现

1 案例背景 1.1离散 Hopfield 神经网络学习规则 离散型 Hopfield神经网络的结构、工作方式,稳定性等问题在第9章中已经进行了详细的介绍,此处不再赘述。本节将详细介绍离散Hopfield神经网络权系数矩阵的设计方法。设计权系数矩阵的目的是: ①保证系统在异步工作时的稳…

6.s081/6.1810(Fall 2022)Lab5: Copy-on-Write Fork for xv6

前言 本来往年这里还有个Lazy Allocation的&#xff0c;今年不知道为啥直接给跳过去了。. 其他篇章 环境搭建 Lab1: Utilities Lab2: System calls Lab3: Page tables Lab4: Traps Lab5: Copy-on-Write Fork for xv6 参考链接 官网链接 xv6手册链接&#xff0c;这个挺重要…

开发运营监控

DevOps 监控使管理员能够实时了解生产环境中的元素&#xff0c;并有助于确保应用程序平稳运行&#xff0c;同时提供最高的业务价值&#xff0c;对于采用 DevOps 文化和方法的公司来说&#xff0c;这一点至关重要。 什么是开发运营监控 DevOps 通过持续开发、集成、测试、监控…

vscode 第一个文件夹在上一层文件夹同行,怎么处理

我的是这样的 打开终端特别麻烦 解决方法就是 打开vscode里边的首选项 进入设置 把Compact Folders下边对勾给勾掉

Java Set集合:HashSet和TreeSet类

Set 集合类似于一个罐子&#xff0c;程序可以依次把多个对象“丢进”Set 集合&#xff0c;而 Set 集合通常不能记住元素的添加顺序。也就是说 Set 集合中的对象不按特定的方式排序&#xff0c;只是简单地把对象加入集合。Set 集合中不能包含重复的对象&#xff0c;并且最多只允…

谈谈DNS是什么?它的作用以及工作流程

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 作者会持续更新网络知识和python基础知识&#xff0c;期待你的关注 目录 一、DNS是什么&#xff1f; 二、DNS的作用 三、DNS查询流程 1、查看浏览器缓存 2、查看系统缓存 3、查看路由器缓存 4、查看ISP …