机器学习深度学习——卷积神经网络(LeNet)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——池化层
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

卷积神经网络(LeNet)

  • 引言
  • LeNet
  • 模型训练
  • 小结

引言

之前的内容中曾经将softmax回归模型和多层感知机应用于Fashion-MNIST数据集中的服装图片。为了能应用他们,我们首先就把图像展平成了一维向量,然后用全连接层对其进行处理。
而现在已经学习过了卷积层的处理方法,我们就可以在图像中保留空间结构。同时,用卷积层代替全连接层的另一个好处是:模型更简单,所需参数更少。
LeNet是最早发布的卷积神经网络之一,之前出来的目的是为了识别图像中的手写数字。

LeNet

总体看,由两个部分组成:
1、卷积编码器:由两个卷积层组成
2、全连接层密集快:由三个全连接层组成
在这里插入图片描述
上图中就是LeNet的数据流图示,其中汇聚层也就是池化层。
最终输出的大小是10,也就是10个可能结果(0-9)。
每个卷积块的基本单元是一个卷积层、一个sigmoid激活函数和平均池化层(当年没有ReLU和最大池化层)。每个卷积层使用5×5卷积核和一个sigmoid激活函数。
这些层的作用就是将输入映射到多个二维特征输出,通常同时增加通道的数量。(从上图容易看出:第一卷积层有6个输出通道,而第二个卷积层有16个输出通道;每个2×2池操作(步幅也为2)通过空间下采样将维数减少4倍)。卷积的输出形状那是由批量大小、通道数、高度、宽度决定。
为了将卷积块的输出传递给稠密块,我们必须在小批量中展平每个样本(也就是把四维的输入转换为全连接层期望的二维输入,第一维索引小批量中的样本,第二维给出给个样本的平面向量表示)。
LeNet的稠密块有三个全连接层,分别有120、84和10个输出。因为我们在执行分类任务,所以输出层的10维对应于最后输出结果的数量(代表0-9是个结果)。
深度学习框架实现此类模型非常简单,用一个Sequential块把需要的层连接在一个就可以了,我们对原始模型做一个小改动,去掉最后一层的高斯激活:

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(# 输入图像和输出图像都是28×28,因此我们要先进行填充2格nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),nn.Linear(120, 84), nn.Sigmoid(),nn.Linear(84, 10)
)

上面的模型图示就为:
在这里插入图片描述
我们可以先检查模型,在每一层打印输出的形状:

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)

输出结果:

Conv2d output shape: torch.Size([1, 6, 28, 28])
Sigmoid output shape: torch.Size([1, 6, 28, 28])
AvgPool2d output shape: torch.Size([1, 6, 14, 14])
Conv2d output shape: torch.Size([1, 16, 10, 10])
Sigmoid output shape: torch.Size([1, 16, 10, 10])
AvgPool2d output shape: torch.Size([1, 16, 5, 5])
Flatten output shape: torch.Size([1, 400])
Linear output shape: torch.Size([1, 120])
Sigmoid output shape: torch.Size([1, 120])
Linear output shape: torch.Size([1, 84])
Sigmoid output shape: torch.Size([1, 84])
Linear output shape: torch.Size([1, 10])

模型训练

既然已经实现了LeNet,现在可以查看它在Fashion-MNIST数据集上的表现:

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

计算成本较高,因此使用GPU来加快训练。为了进行评估,对之前的evaluate_accuracy进行修改,由于完整的数据集位于内存中,因此在模型使用GPU计算数据集之前,我们需要将其复制到显存中。

def evaluate_accuracy_gpu(net, data_iter, device=None):"""使用GPU计算模型在数据集上的精度"""if isinstance(net, nn.Module):net.eval()  # 设置为评估模式if not device:device = next(iter(net.parameters())).device# 正确预测的数量,总预测的数量metric = d2l.Accumulator(2)with torch.no_grad():for X, y in data_iter:if isinstance(X, list):# BERT微调所需(后面内容)else:X = X.to(device)y = y.to(device)metric.add(d2l.accuracy(net(X), y), y.numel())return metric[0] / metric[1]

要使用GPU,我们要在正向和反向传播之前,将每一小批量数据移动到我们GPU上。
如下所示的train_ch6类似于之前定义的train_ch3。以下训练函数假定从高级API创建的模型作为输入,并进行相应的优化。
使用Xavier来随机初始化模型参数。有关于Xavier的推导和原理可以看下面的文章:
机器学习&&深度学习——数值稳定性和模型化参数(详细数学推导)
与全连接层一样,使用交叉熵损失函数和小批量随机梯度下降,代码如下:

def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):  #@save"""用GPU训练模型"""def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)print('training on', device)net.to(device)optimizer = torch.optim.SGD(net.parameters(), lr=lr)loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])timer, num_batches = d2l.Timer(), len(train_iter)for epoch in range(num_epochs):# 训练损失之和,训练准确率之和,样本数metric = d2l.Accumulator(3)net.train()for i, (X, y) in enumerate(train_iter):timer.start()optimizer.zero_grad()X, y = X.to(device), y.to(device)y_hat = net(X)l = loss(y_hat, y)optimizer.step()with torch.no_grad():metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])timer.stop()train_l = metric[0] / metric[2]train_acc =  metric[1] / metric[2]if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i+1) / num_batches, (train_l, train_acc, None))test_acc = evaluate_accuracy_gpu(net, test_iter)animator.add(epoch + 1, (None, None, test_acc))print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec 'f'on {str(device)}')

此时我们可以开始训练和评估LeNet模型:

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

运行输出(这边我没有用远程的GPU,在自己本地跑了,本地只有CPU):

training on cpu
loss 0.477, train acc 0.820, test acc 0.795
8004.2 examples/sec on cpu

运行图片:
在这里插入图片描述

小结

1、卷积神经网络(CNN)是一类使用卷积层的网络
2、在卷积神经网络中,我们组合使用卷积层、非线性激活函数和池化层
3、为了构造高性能的卷积神经网络,我们通常对卷积层进行排列,逐渐降低其表示的空间分辨率,同时增加通道数
4、传统卷积神经网络中,卷积块编码得到的表征在输出之前需要由一个或多个全连接层进行处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/80232.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pandaer的iPhone手机壳

哇塞,Pandaer的设计太棒了!手机壳的花样多到让我眼花缭乱,好多系列设计都很有意思,让人有集齐的冲动。我最近入手了几个iPhone的手机壳,它有亮色和透明的款式,亮色的壳内部也是亮的,因为手机壳全…

Pytorch Tutorial【Chapter 2. Autograd】

Pytorch Tutorial 文章目录 Pytorch TutorialChapter 2. Autograd1. Review Matrix Calculus1.1 Definition向量对向量求导1.2 Definition标量对向量求导1.3 Definition标量对矩阵求导 2.关于autograd的说明3. grad的计算3.1 Manual手动计算3.2 backward()自动计算 Reference C…

Java学习笔记

JVM JVM是java虚拟机,由于不同的客户端(如手机、笔记本、台式)有不同的芯片,同一段代码会被翻译成不同的机器指令,所以在没有JVM的时候,对于这些不同的客户端,需要编写不同的代码,就…

uniapp微信小程序 401时重复弹出登录弹框问题

APP.vue 登陆成功后,保存登陆信息 if (res.code 200) {uni.setStorageSync(loginResult, res)uni.setStorageSync(token, res.token);uni.setStorageSync(login,false);uni.navigateTo({url: "/pages/learning/learning"}) }退出登录 toLogout: func…

C高级--day4(wc指令、case...in、while循环、for循环、select..in、break、continue、shell中的函数)

#!/bin/bash function fun() {uidid -u $namegidid -g $nameecho $uid $gid } read name retfun $name echo $ret

Detector定位算法在FPGA中的实现——section1 原理推导

关于算法在FPGA中的实现,本次利用业余的时间推出一个系列章节,专门记录从算法的推导、Matlab的实现、FPGA的移植开发与仿真做一次完整的FPGA算法开发,在此做一下相关的记录和总结,做到温故知新。 这里以Detector在Global Coordina…

ORCA优化器浅析——CFunctionProp function properties

CFunctionProp CFunctionProp代表了function properties函数属性,主要由function stability函数易变性( enum EFuncStbl { EfsImmutable, /* never changes for given input */ EfsStable, /* does not change within a scan */ EfsVolatile, /* can ch…

Air32 | 合宙Air001单片机内部FLASH读写示例

Air32 | 合宙Air001单片机内部FLASH读写示例 代码已经通过测试,开发环境KEIL-MDK 5.36。 测试代码 void FLASH_RdWrTest(void) {uint32_t Address;uint32_t PageReadBuffer[FLASH_PAGE_SIZE >> 2];uint32_t PageWriteBuffer[FLASH_PAGE_SIZE >> 2];mem…

【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差

序号内容1【数理知识】自由度 degree of freedom 及自由度的计算方法2【数理知识】刚体 rigid body 及刚体的运动3【数理知识】刚体基本运动,平动,转动4【数理知识】向量数乘,内积,外积,matlab代码实现5【数理知识】协…

java+springboot+mysql日程管理系统

项目介绍: 使用javaspringbootmysql开发的日程管理系统,系统包含超级管理员、管理员、用户角色,功能如下: 超级管理员:管理员管理;用户管理;反馈管理;系统公告;个人信息…

.Net6 Web Core API --- AOP -- log4net 封装 -- MySQL -- txt

目录 一、引入 NuGet 包 二、配置log4net.config 三、编写Log4net封装类 四、编写日志记录类 五、AOP -- 拦截器 -- 封装 六、案例编写 七、结果展示 一、引入 NuGet 包 log4net Microsoft.Extensions.Logging.Log4Net.AspNetCore MySql.Data ---- MySQL…

K8S系列文章之 开源的堡垒机 jumpserver

一、jumpserver作为一款开源的堡垒机,不管是企业还是个人,我觉得都是比较合适的,而且使用也比较简单。 二、这里记录一下安装和使用过程。 1、安装,直接docker不是就行 version: 3 services:xbd-mysql:image: mysql:8.0.19restart…

离散化的两种实现方式【sort或者map】

离散化 定义 把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。 适用范围:数组中元素值域很大,但个数不是很多。 比如将…

命令行快捷键Mac Iterm2

原文:Jump forwards, backwards and delete a word in iTerm2 on Mac OS iTerm2并不允许你使用 ⌥← 或 ⌥→ 来跳过单词。 你也不能使用 ⌥backspace 来删除整个单词。 下面是在Mac OS上如何配置iTerm2以便能做到这一点的方法。 退格键 首先,你需要将你的左侧 ⌥…

基于Python++PyQt5马尔科夫模型的智能AI即兴作曲—深度学习算法应用(含全部工程源码+测试数据)

目录 前言总体设计系统整体结构图系统流程图 运行环境Python 环境PC环境配置 模块实现1. 钢琴伴奏制作1)和弦的实现2)和弦级数转为当前调式音阶3)根据预置节奏生成伴奏 2. 乐句生成1)添加音符2)旋律生成3)节…

JVM GC ROOT分析

GC root原理:通过对枚举GCroot对象做引用可达性分析,即从GC root对象开始,向下搜索,形成的路径称之为 引用链。如果一个对象到GC roots对象没有任何引用,没有形成引用链,那么该对象等待GC回收,换而言之,如果减少内存泄漏,也就是切断引用链,常见的GCRoot对象如下: 1、…

配置Picgo图床之COS、OSS、Github图床

简介 PicGo是一款开源的图片上传和管理工具,它提供了简单易用的界面和丰富的功能,方便用户上传、管理和分享图片。 以下是PicGo的一些主要特点和功能: 图片上传:PicGo支持将本地图片快速上传到云存储服务,如七牛云、…

深度学习(34)—— StarGAN(1)

深度学习(34)—— StarGAN(1) 文章目录 深度学习(34)—— StarGAN(1)1. 背景2. 基本思路3. 整体流程4. StarGAN v2(1) 网络结构(2) mapping network(3) style encoder(4)Loss 和之前…

【bug】记录一次使用Swiper插件时loop属性和slidersPerView属性冲突问题

简言 最近在vue3使用swiper时,突然发现loop属性和slides-per-view属性同时存在启用时,loop生效,下一步只能生效一次的bug,上一步却是好的。非常滴奇怪。 解决过程 分析属性是否使用错误。 loop是循环模式,布尔型。 …

Django之JWT库与SimpleJWT库的使用

Django之JWT库与SimpleJWT库的使用 JWTJWT概述头部(header)载荷(payload)签名(signature) Django使用JWT说明jwt库的使用安装依赖库配置settings.py文件配置urls.py文件创建视图配置权限 SimpleJWT库的使用安装SimpleJWT库配置Django项目配置路由创建用户接口测试身份认证自定义…