【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差

序号内容
1【数理知识】自由度 degree of freedom 及自由度的计算方法
2【数理知识】刚体 rigid body 及刚体的运动
3【数理知识】刚体基本运动,平动,转动
4【数理知识】向量数乘,内积,外积,matlab代码实现
5【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差
6【数理知识】已知 N>=3 个点在前后时刻的坐标,求刚体平移矩阵,旋转矩阵,且这 N>=3 点间距离始终不变代表一个刚体

文章目录

  • 1. 计算协方差
    • 1. 计算方式一:使用期望值
    • 2. 计算方式二:使用样本数据
    • 3. 对比两种方式
  • 2. 随机变量为二维平面的点
  • 3. 随机变量为三维空间的点
  • 4. 马同学视频例子
  • Ref

协方差是统计学中一个重要的概念,它用于衡量两个随机变量的总体误差。简单来说,协方差用于度量两个变量之间的线性关系。

如果协方差是正的,那么两个变量可能会同时增大或减小,这表明它们之间可能存在正相关的关系。
如果协方差是负的,那么其中一个变量增大时,另一个可能减小,这表明它们之间可能存在负相关的关系。
如果协方差是 0 0 0,那么两个变量可能不相关。

协方差的一个主要应用是在统计和概率理论中,用于衡量两个随机变量的联动性。此外,协方差矩阵在多元统计分析、信号处理、控制系统、投资组合优化等多个领域都有广泛的应用。

然而,协方差有一个缺点,就是它的值受到变量尺度的影响。例如,如果你测量同一个物理量,但是使用的单位不同(比如使用米和厘米),你会得到完全不同的协方差。为了克服这个问题,我们经常使用相关系数(协方差除以两个变量的标准差),这是一个标准化的协方差,不受尺度的影响,范围在-1到1之间。

1. 计算协方差

总的来说,计算协方差可以使用两种方式。区别在于是否知道全部的数据量,也就是说我们是知道随机变量的期望均值,还是仅知道样本数据的样本均值。至于期望均值和样本均值的区别,请查阅文章:【LinearAlgebra】12.1 Mean, Variance, and Probability。


第一种,当我们知道所有的数据(总数据量为 N N N)时,也就是知道了具体的期望值,可以使用公式

Cov ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] \begin{aligned} \text{Cov} (X,Y) &= \text{E} [(X-\mu X)(Y-\mu Y)] \end{aligned} Cov(X,Y)=E[(XμX)(YμY)]

来计算。其中 μ X 、 μ Y \mu X、\mu Y μXμY 分别是 X X X Y Y Y 的期望值。


第二种是仅知道样本数据(样本数量为 n n n,总数据量为 N N N)时,可以使用公式

Cov ( X , Y ) = ∑ i n ( x i − x ˉ ) ( y i − y ˉ ) n − 1 \begin{aligned} \text{Cov} (X,Y) &= \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{n-1} \end{aligned} Cov(X,Y)=n1in(xixˉ)(yiyˉ)

来估算(注意不是计算)协方差。其中 x i 、 y i x_i、y_i xiyi 是两个随机变量已知的样本数据, x ˉ 、 y ˉ \bar{x}、\bar{y} xˉyˉ 是两个随机变量的平均值。注意这里是除以( n − 1 n-1 n1)而不是 n n n,因为这是无偏估计,当样本数据用来估计总计参数时,需要这样处理。


接下来用同一组数据,分别使用两种方式来计算协方差,看下效果。


1. 计算方式一:使用期望值

假设有两个随机变量 X = { 1 , 2 , 2 , 2 , 3 } X = \{1, 2, 2, 2, 3\} X={1,2,2,2,3} Y = { 6 , 6 , 7 , 7 , 8 } Y = \{6, 6, 7, 7, 8\} Y={6,6,7,7,8}。我们能够分别计算二者的期望均值为
μ X = ( 1 + 2 + 2 + 2 + 3 ) / 5 = 2 μ Y = ( 6 + 6 + 7 + 7 + 8 ) / 5 = 6.8 \begin{aligned} \mu X &= (1+2+2+2+3)/5=2 \\ \mu Y &= (6+6+7+7+8)/5=6.8 \end{aligned} μXμY=(1+2+2+2+3)/5=2=(6+6+7+7+8)/5=6.8

那么协方差为

Cov ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] = [ ( 1 − 2 ) ( 6 − 6.8 ) + ( 2 − 2 ) ( 6 − 6.8 ) + ( 2 − 2 ) ( 7 − 6.8 ) + ( 2 − 2 ) ( 7 − 6.8 ) + ( 3 − 2 ) ( 8 − 6.8 ) ] / 5 = [ 0.8 + 0 + 0 + 0 + 1.2 ] / 5 = 0.4 \begin{aligned} \text{Cov} (X,Y) &= \text{E} [(X-\mu X)(Y-\mu Y)] \\ &= [(1-2)(6-6.8) + (2-2)(6-6.8) + (2-2)(7-6.8) + (2-2)(7-6.8) + (3-2)(8-6.8)] / 5 \\ &= [0.8 + 0 + 0 + 0 + 1.2] / 5 \\ &= 0.4 \end{aligned} Cov(X,Y)=E[(XμX)(YμY)]=[(12)(66.8)+(22)(66.8)+(22)(76.8)+(22)(76.8)+(32)(86.8)]/5=[0.8+0+0+0+1.2]/5=0.4

所以,这两个随机变量的协方差为 0.4 0.4 0.4


2. 计算方式二:使用样本数据

还是上边的两个随机变量。但假如我们仅知道其中的 3 3 3 个,如 X = { 1 , 2 , 2 , 3 } X = \{1, 2, 2, 3\} X={1,2,2,3} Y = { 6 , 6 , 7 , 8 } Y = \{6, 6, 7, 8\} Y={6,6,7,8},同时也不知道每个样本的概率。这时候,我们仅能计算出来样本均值,也就是

x ˉ = ( 1 + 2 + 2 + 3 ) / 4 = 2 y ˉ = ( 6 + 6 + 7 + 8 ) / 4 = 6.75 \begin{aligned} \bar{x} &= (1+2+2+3)/4=2 \\ \bar{y} &= (6+6+7+8)/4=6.75 \end{aligned} xˉyˉ=(1+2+2+3)/4=2=(6+6+7+8)/4=6.75

那么协方差为

Cov ( X , Y ) = ∑ i n ( x i − x ˉ ) ( y i − y ˉ ) n − 1 = [ ( 1 − 2 ) ( 6 − 6.75 ) + ( 2 − 2 ) ( 6 − 6.75 ) + ( 2 − 2 ) ( 7 − 6.75 ) + ( 3 − 2 ) ( 8 − 6.75 ) ] / ( 4 − 1 ) = [ 0.75 + 0 + 0 + 1.25 ] / 3 = 0.6667 \begin{aligned} \text{Cov} (X,Y) &= \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{n-1} \\ &= [(1-2)(6-6.75) + (2-2)(6-6.75) + (2-2)(7-6.75) + (3-2)(8-6.75)] / (4-1) \\ &= [0.75 + 0 + 0 + 1.25] / 3 \\ &= 0.6667 \end{aligned} Cov(X,Y)=n1in(xixˉ)(yiyˉ)=[(12)(66.75)+(22)(66.75)+(22)(76.75)+(32)(86.75)]/(41)=[0.75+0+0+1.25]/3=0.6667

所以,用这一组样本估算出来的协方差为 0.6667 0.6667 0.6667


在上述样本的基础上,假如我们知道了其概率,也就是样本为 X = { 1 , 2 , 2 , 3 } X = \{1, 2, 2, 3\} X={1,2,2,3} Y = { 6 , 6 , 7 , 8 } Y = \{6, 6, 7, 8\} Y={6,6,7,8},同时每个样本的概率为 P = { 0.2 , 0.2 , 0.4 , 0.2 } P = \{0.2, 0.2, 0.4, 0.2\} P={0.2,0.2,0.4,0.2}。那此时就可以计算出来随机变量的期望值为

μ X = 0.2 ∗ 1 + 0.2 ∗ 2 + 0.4 ∗ 2 + 0.2 ∗ 3 = 2 μ Y = 0.2 ∗ 6 + 0.2 ∗ 6 + 0.4 ∗ 7 + 0.2 ∗ 8 = 6.8 \begin{aligned} \mu X &= 0.2*1+0.2*2+0.4*2+0.2*3=2 \\ \mu Y &= 0.2*6+0.2*6+0.4*7+0.2*8=6.8 \end{aligned} μXμY=0.21+0.22+0.42+0.23=2=0.26+0.26+0.47+0.28=6.8

计算协方差为

Cov ( X , Y ) = ∑ p i ( x i − μ X ) ( y i − μ Y ) = 0.2 ∗ ( 1 − 2 ) ( 6 − 8 ) + 0.2 ∗ ( 2 − 2 ) ( 6 − 8 ) + 0.4 ∗ ( 2 − 2 ) ( 7 − 8 ) + 0.2 ∗ ( 3 − 2 ) ( 8 − 8 ) = 0.2 ∗ ( 2 ) + 0.2 ∗ ( 0 ) + 0.4 ∗ ( 0 ) + 0.2 ∗ ( 0 ) = 0.4 \begin{aligned} \text{Cov} (X,Y) &= \sum p_i (x_i - \mu X)(y_i - \mu Y) \\ &= 0.2*(1-2)(6-8) + 0.2*(2-2)(6-8) + 0.4*(2-2)(7-8) + 0.2*(3-2)(8-8) \\ &= 0.2*(2) + 0.2*(0) + 0.4*(0) + 0.2*(0) \\ &= 0.4 \end{aligned} Cov(X,Y)=pi(xiμX)(yiμY)=0.2(12)(68)+0.2(22)(68)+0.4(22)(78)+0.2(32)(88)=0.2(2)+0.2(0)+0.4(0)+0.2(0)=0.4


3. 对比两种方式

至于为什么知道了样本的概率就能知道精准知道协方差了,可以看一下数据的排列。

首先,全部数据可以排列成

Data N = [ x i 1 2 2 2 3 y i 6 6 7 7 8 p i 0.2 0.2 0.2 0.2 0.2 ] = [ x i 1 2 2 3 y i 6 6 7 8 p i 0.2 0.2 0.4 0.2 ] \text{Data}_N = \left[\begin{matrix} x_i & 1 & 2 & 2 & 2 & 3 \\ y_i & 6 & 6 & 7 & 7 & 8 \\ p_i & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ \end{matrix}\right] =\left[\begin{matrix} x_i & 1 & 2 & 2 & 3 \\ y_i & 6 & 6 & 7 & 8 \\ p_i & 0.2 & 0.2 & 0.4 & 0.2 \\ \end{matrix}\right] DataN= xiyipi160.2260.2270.2270.2380.2 = xiyipi160.2260.2270.4380.2

而使用样本估算的方法时,我们用的应该是

Data n = [ x i 1 2 2 3 y i 6 6 7 8 p i 0.25 0.25 0.25 0.25 ] \text{Data}_n = \left[\begin{matrix} x_i & 1 & 2 & 2 & 3 \\ y_i & 6 & 6 & 7 & 8 \\ p_i & 0.25 & 0.25 & 0.25 & 0.25 \\ \end{matrix}\right] Datan= xiyipi160.25260.25270.25380.25

所以,对比观看一下可以知道,我们在样本估算时,实际也是假设了每个样本出现的概率都是相同的。


2. 随机变量为二维平面的点

在上述描述中,我们随机变量中的样本都是数字,也就是每个样本数据的维度都是 1 1 1 维的。接下来假设样本为二维平面中的点,也就是样本数据的维度为 2 2 2 维。

假设随机变量的样本为: X = { ( 1 , 2 ) , ( 3 , 4 ) , ( 5 , 6 ) } X = \{(1,2), (3,4), (5,6)\} X={(1,2),(3,4),(5,6)} Y = { ( 2 , 3 ) , ( 4 , 5 ) , ( 6 , 7 ) } Y = \{(2,3), (4,5), (6,7)\} Y={(2,3),(4,5),(6,7)}。首先计算均值为

x ˉ = ( 1 + 3 + 5 , 2 + 4 + 6 ) / 3 = ( 3 , 4 ) y ˉ = ( 2 + 4 + 6 , 3 + 5 + 7 ) / 3 = ( 4 , 5 ) \begin{aligned} \bar{x} &= (1+3+5, 2+4+6)/3=(3,4) \\ \bar{y} &= (2+4+6, 3+5+7)/3=(4,5) \end{aligned} xˉyˉ=(1+3+5,2+4+6)/3=(3,4)=(2+4+6,3+5+7)/3=(4,5)

然后,我们计算协方差矩阵。在这种情况下,协方差矩阵是一个 2 × 2 2 \times 2 2×2 的矩阵,其每个元素 Cov ( X , Y ) i j \text{Cov}(X,Y)_{ij} Cov(X,Y)ij X X X 的第 i i i 个维度和 Y Y Y 的第 j j j 个维度的协方差。在这种情况下,我们计算的是 X X X Y Y Y 之间的协方差,而不是 X X X Y Y Y 内部的协方差,所以我们是在计算 X X X 的第 i i i 个维度和 Y Y Y 的第 j j j 个维度。

矩阵的每一个元素 ( i , j ) (i,j) (i,j) 都是通过以下公式计算得到的:

Cov ( X , Y ) i j = ∑ k n = 3 ( x k i − x ˉ i ) ( y k j − y ˉ i ) n − 1 \begin{aligned} \text{Cov} (X,Y)_{ij} &= \frac{\sum_k^{n=3} (x_{ki} - \bar{x}_i)(y_{kj} - \bar{y}_i)}{n-1} \end{aligned} Cov(X,Y)ij=n1kn=3(xkixˉi)(ykjyˉi)

其中 x k i x_{ki} xki 表示第 k k k 个样本的第 i i i 个维度的值, x ˉ i \bar{x}_i xˉi 表示均值的第 i i i 个维度。

依次代入数值并展开有

Cov ( X , Y ) i = 1 , j = 1 = ( 1 − 3 ) ( 2 − 4 ) + ( 3 − 3 ) ( 4 − 4 ) + ( 5 − 3 ) ( 6 − 4 ) 3 − 1 = 4 Cov ( X , Y ) i = 1 , j = 2 = ( 1 − 3 ) ( 3 − 5 ) + ( 3 − 3 ) ( 5 − 5 ) + ( 5 − 3 ) ( 7 − 5 ) 3 − 1 = 4 \begin{aligned} \text{Cov} (X,Y)_{i=1,j=1} &= \frac{(1-3)(2-4) + (3-3)(4-4) + (5-3)(6-4)}{3-1} = 4 \\ \text{Cov} (X,Y)_{i=1,j=2} &= \frac{(1-3)(3-5) + (3-3)(5-5) + (5-3)(7-5)}{3-1} = 4 \end{aligned} Cov(X,Y)i=1,j=1Cov(X,Y)i=1,j=2=31(13)(24)+(33)(44)+(53)(64)=4=31(13)(35)+(33)(55)+(53)(75)=4

Cov ( X , Y ) i = 2 , j = 1 = ( 2 − 4 ) ( 2 − 4 ) + ( 4 − 4 ) ( 4 − 4 ) + ( 6 − 4 ) ( 6 − 4 ) 3 − 1 = 4 Cov ( X , Y ) i = 2 , j = 2 = ( 2 − 4 ) ( 3 − 5 ) + ( 4 − 4 ) ( 5 − 5 ) + ( 6 − 4 ) ( 7 − 5 ) 3 − 1 = 4 \begin{aligned} \text{Cov} (X,Y)_{i=2,j=1} &= \frac{(2-4)(2-4) + (4-4)(4-4) + (6-4)(6-4)}{3-1} = 4 \\ \text{Cov} (X,Y)_{i=2,j=2} &= \frac{(2-4)(3-5) + (4-4)(5-5) + (6-4)(7-5)}{3-1} = 4 \end{aligned} Cov(X,Y)i=2,j=1Cov(X,Y)i=2,j=2=31(24)(24)+(44)(44)+(64)(64)=4=31(24)(35)+(44)(55)+(64)(75)=4

故协方差矩阵为

Cov ( X , Y ) = [ 4 4 4 4 ] \begin{aligned} \text{Cov} (X,Y) &= \left[\begin{matrix} 4 & 4 \\ 4 & 4 \\ \end{matrix}\right] \end{aligned} Cov(X,Y)=[4444]


3. 随机变量为三维空间的点

接下来假设样本为三维空间中的点,也就是样本数据的维度为 3 3 3 维。

假设随机变量的样本为: X = { ( 1 , 2 , 3 ) , ( 4 , 5 , 6 ) , ( 7 , 8 , 9 ) } X = \{(1,2,3), (4,5,6), (7,8,9)\} X={(1,2,3),(4,5,6),(7,8,9)} Y = { ( 2 , 3 , 4 ) , ( 5 , 6 , 7 ) , ( 8 , 9 , 10 ) } Y = \{(2,3,4), (5,6,7), (8,9,10)\} Y={(2,3,4),(5,6,7),(8,9,10)}。首先计算均值为

x ˉ = ( 1 + 4 + 7 , 2 + 5 + 8 , 3 + 6 + 9 ) / 3 = ( 4 , 5 , 6 ) y ˉ = ( 2 + 5 + 8 , 3 + 6 + 9 , 4 + 7 + 10 ) / 3 = ( 5 , 6 , 7 ) \begin{aligned} \bar{x} &= (1+4+7, 2+5+8, 3+6+9)/3=(4, 5, 6) \\ \bar{y} &= (2+5+8, 3+6+9, 4+7+10)/3=(5, 6, 7) \end{aligned} xˉyˉ=(1+4+7,2+5+8,3+6+9)/3=(4,5,6)=(2+5+8,3+6+9,4+7+10)/3=(5,6,7)

然后,我们计算协方差矩阵。在这种情况下,协方差矩阵是一个 3 × 3 3 \times 3 3×3 的矩阵,其每个元素 Cov ( X , Y ) i j \text{Cov}(X,Y)_{ij} Cov(X,Y)ij X X X 的第 i i i 个维度和 Y Y Y 的第 j j j 个维度的协方差。

矩阵的每一个元素 ( i , j ) (i,j) (i,j) 都是通过以下公式计算得到的:

Cov ( X , Y ) i j = ∑ k n = 3 ( x k i − x ˉ i ) ( y k j − y ˉ i ) n − 1 \begin{aligned} \text{Cov} (X,Y)_{ij} &= \frac{\sum_k^{n=3} (x_{ki} - \bar{x}_i)(y_{kj} - \bar{y}_i)}{n-1} \end{aligned} Cov(X,Y)ij=n1kn=3(xkixˉi)(ykjyˉi)

依次代入数值并展开有

Cov ( X , Y ) i = 1 , j = 1 = ( 1 − 4 ) ( 2 − 5 ) + ( 4 − 4 ) ( 3 − 5 ) + ( 7 − 4 ) ( 4 − 5 ) 3 − 1 = 3 Cov ( X , Y ) i = 1 , j = 2 = ( 1 − 4 ) ( 5 − 6 ) + ( 4 − 4 ) ( 6 − 6 ) + ( 7 − 4 ) ( 7 − 6 ) 3 − 1 = 3 Cov ( X , Y ) i = 1 , j = 3 = ( 1 − 4 ) ( 8 − 7 ) + ( 4 − 4 ) ( 9 − 7 ) + ( 7 − 4 ) ( 10 − 7 ) 3 − 1 = 3 \begin{aligned} \text{Cov} (X,Y)_{i=1,j=1} &= \frac{(1-4)(2-5) + (4-4)(3-5) + (7-4)(4-5)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=1,j=2} &= \frac{(1-4)(5-6) + (4-4)(6-6) + (7-4)(7-6)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=1,j=3} &= \frac{(1-4)(8-7) + (4-4)(9-7) + (7-4)(10-7)}{3-1} = 3 \end{aligned} Cov(X,Y)i=1,j=1Cov(X,Y)i=1,j=2Cov(X,Y)i=1,j=3=31(14)(25)+(44)(35)+(74)(45)=3=31(14)(56)+(44)(66)+(74)(76)=3=31(14)(87)+(44)(97)+(74)(107)=3

Cov ( X , Y ) i = 2 , j = 1 = ( 2 − 5 ) ( 2 − 5 ) + ( 5 − 5 ) ( 3 − 5 ) + ( 8 − 5 ) ( 4 − 5 ) 3 − 1 = 3 Cov ( X , Y ) i = 2 , j = 2 = ( 2 − 5 ) ( 5 − 6 ) + ( 5 − 5 ) ( 6 − 6 ) + ( 8 − 5 ) ( 7 − 6 ) 3 − 1 = 3 Cov ( X , Y ) i = 2 , j = 3 = ( 2 − 5 ) ( 8 − 7 ) + ( 5 − 5 ) ( 9 − 7 ) + ( 8 − 5 ) ( 10 − 7 ) 3 − 1 = 3 \begin{aligned} \text{Cov} (X,Y)_{i=2,j=1} &= \frac{(2-5)(2-5) + (5-5)(3-5) + (8-5)(4-5)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=2,j=2} &= \frac{(2-5)(5-6) + (5-5)(6-6) + (8-5)(7-6)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=2,j=3} &= \frac{(2-5)(8-7) + (5-5)(9-7) + (8-5)(10-7)}{3-1} = 3 \end{aligned} Cov(X,Y)i=2,j=1Cov(X,Y)i=2,j=2Cov(X,Y)i=2,j=3=31(25)(25)+(55)(35)+(85)(45)=3=31(25)(56)+(55)(66)+(85)(76)=3=31(25)(87)+(55)(97)+(85)(107)=3

Cov ( X , Y ) i = 3 , j = 1 = ( 3 − 6 ) ( 2 − 5 ) + ( 6 − 6 ) ( 3 − 5 ) + ( 9 − 6 ) ( 4 − 5 ) 3 − 1 = 3 Cov ( X , Y ) i = 3 , j = 2 = ( 3 − 6 ) ( 5 − 6 ) + ( 6 − 6 ) ( 6 − 6 ) + ( 9 − 6 ) ( 7 − 6 ) 3 − 1 = 3 Cov ( X , Y ) i = 3 , j = 3 = ( 3 − 6 ) ( 8 − 7 ) + ( 6 − 6 ) ( 9 − 7 ) + ( 9 − 6 ) ( 10 − 7 ) 3 − 1 = 3 \begin{aligned} \text{Cov} (X,Y)_{i=3,j=1} &= \frac{(3-6)(2-5) + (6-6)(3-5) + (9-6)(4-5)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=3,j=2} &= \frac{(3-6)(5-6) + (6-6)(6-6) + (9-6)(7-6)}{3-1} = 3 \\ \text{Cov} (X,Y)_{i=3,j=3} &= \frac{(3-6)(8-7) + (6-6)(9-7) + (9-6)(10-7)}{3-1} = 3 \end{aligned} Cov(X,Y)i=3,j=1Cov(X,Y)i=3,j=2Cov(X,Y)i=3,j=3=31(36)(25)+(66)(35)+(96)(45)=3=31(36)(56)+(66)(66)+(96)(76)=3=31(36)(87)+(66)(97)+(96)(107)=3

故协方差矩阵为

Cov ( X , Y ) = [ 3 3 3 3 3 3 3 3 3 ] \begin{aligned} \text{Cov} (X,Y) &= \left[\begin{matrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \\ \end{matrix}\right] \end{aligned} Cov(X,Y)= 333333333


4. 马同学视频例子

如果看公式比较抽象的,也可以看看马同学图解数学中的视频讲解:如何通俗地解释协方差 - bilibili。我截取了几个关键步骤的视频截图。

使用的是身高 x i x_i xi 和体重 y i y_i yi 这两个指标为例子。
在这里插入图片描述

想要知道身高和体重的相关性,可以使用下边这种计算方式。

在这里插入图片描述

∑ ( x i − x ˉ ) ( y i − y ˉ ) (1) \begin{aligned} \sum (x_i - \bar{x})(y_i - \bar{y}) \end{aligned} \tag{1} (xixˉ)(yiyˉ)(1)

其中 x ˉ , y ˉ \bar{x}, \bar{y} xˉ,yˉ 分别表示身高,体重的平均值。

但数据差异较大时,就会出现错误判断。

在这里插入图片描述

这时候引入数据出现的概率 p i p_i pi,同时替换数字平均值 x ˉ , y ˉ \bar{x}, \bar{y} xˉ,yˉ 为加权平均值 μ X , μ Y \mu X, \mu Y μX,μY
此时公式(1)变为

∑ ( x i − x ˉ ) ( y i − y ˉ ) ∑ p i ( x i − μ X ) ( y i − μ Y ) (2) \begin{aligned} &\sum (x_i - \bar{x})(y_i - \bar{y}) \\ &\sum p_i (x_i - \mu X)(y_i - \mu Y) \end{aligned} \tag{2} (xixˉ)(yiyˉ)pi(xiμX)(yiμY)(2)

其中 μ X , μ Y \mu X, \mu Y μX,μY 表示加权平均, p i p_i pi 表示每一项的概率。

在这里插入图片描述

最后,将式子改写成期望的形式有

∑ ( x i − x ˉ ) ( y i − y ˉ ) ∑ p i ( x i − μ X ) ( y i − μ Y ) Cov ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] (3) \begin{aligned} &\sum (x_i - \bar{x})(y_i - \bar{y}) \\ &\sum p_i (x_i - \mu X)(y_i - \mu Y) \\ \text{Cov} (X,Y) &= \text{E} [(X-\mu X)(Y-\mu Y)] \end{aligned} \tag{3} Cov(X,Y)(xixˉ)(yiyˉ)pi(xiμX)(yiμY)=E[(XμX)(YμY)](3)


Ref

  1. 如何通俗地解释协方差 - bilibili
  2. 从3组对应点中求得最佳的旋转和平移变换

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/80222.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java+springboot+mysql日程管理系统

项目介绍: 使用javaspringbootmysql开发的日程管理系统,系统包含超级管理员、管理员、用户角色,功能如下: 超级管理员:管理员管理;用户管理;反馈管理;系统公告;个人信息…

.Net6 Web Core API --- AOP -- log4net 封装 -- MySQL -- txt

目录 一、引入 NuGet 包 二、配置log4net.config 三、编写Log4net封装类 四、编写日志记录类 五、AOP -- 拦截器 -- 封装 六、案例编写 七、结果展示 一、引入 NuGet 包 log4net Microsoft.Extensions.Logging.Log4Net.AspNetCore MySql.Data ---- MySQL…

K8S系列文章之 开源的堡垒机 jumpserver

一、jumpserver作为一款开源的堡垒机,不管是企业还是个人,我觉得都是比较合适的,而且使用也比较简单。 二、这里记录一下安装和使用过程。 1、安装,直接docker不是就行 version: 3 services:xbd-mysql:image: mysql:8.0.19restart…

离散化的两种实现方式【sort或者map】

离散化 定义 把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。 适用范围:数组中元素值域很大,但个数不是很多。 比如将…

命令行快捷键Mac Iterm2

原文:Jump forwards, backwards and delete a word in iTerm2 on Mac OS iTerm2并不允许你使用 ⌥← 或 ⌥→ 来跳过单词。 你也不能使用 ⌥backspace 来删除整个单词。 下面是在Mac OS上如何配置iTerm2以便能做到这一点的方法。 退格键 首先,你需要将你的左侧 ⌥…

基于Python++PyQt5马尔科夫模型的智能AI即兴作曲—深度学习算法应用(含全部工程源码+测试数据)

目录 前言总体设计系统整体结构图系统流程图 运行环境Python 环境PC环境配置 模块实现1. 钢琴伴奏制作1)和弦的实现2)和弦级数转为当前调式音阶3)根据预置节奏生成伴奏 2. 乐句生成1)添加音符2)旋律生成3)节…

JVM GC ROOT分析

GC root原理:通过对枚举GCroot对象做引用可达性分析,即从GC root对象开始,向下搜索,形成的路径称之为 引用链。如果一个对象到GC roots对象没有任何引用,没有形成引用链,那么该对象等待GC回收,换而言之,如果减少内存泄漏,也就是切断引用链,常见的GCRoot对象如下: 1、…

配置Picgo图床之COS、OSS、Github图床

简介 PicGo是一款开源的图片上传和管理工具,它提供了简单易用的界面和丰富的功能,方便用户上传、管理和分享图片。 以下是PicGo的一些主要特点和功能: 图片上传:PicGo支持将本地图片快速上传到云存储服务,如七牛云、…

深度学习(34)—— StarGAN(1)

深度学习(34)—— StarGAN(1) 文章目录 深度学习(34)—— StarGAN(1)1. 背景2. 基本思路3. 整体流程4. StarGAN v2(1) 网络结构(2) mapping network(3) style encoder(4)Loss 和之前…

【bug】记录一次使用Swiper插件时loop属性和slidersPerView属性冲突问题

简言 最近在vue3使用swiper时,突然发现loop属性和slides-per-view属性同时存在启用时,loop生效,下一步只能生效一次的bug,上一步却是好的。非常滴奇怪。 解决过程 分析属性是否使用错误。 loop是循环模式,布尔型。 …

Django之JWT库与SimpleJWT库的使用

Django之JWT库与SimpleJWT库的使用 JWTJWT概述头部(header)载荷(payload)签名(signature) Django使用JWT说明jwt库的使用安装依赖库配置settings.py文件配置urls.py文件创建视图配置权限 SimpleJWT库的使用安装SimpleJWT库配置Django项目配置路由创建用户接口测试身份认证自定义…

c++--二叉树应用

1.根据二叉树创建字符串 力扣 给你二叉树的根节点 root ,请你采用前序遍历的方式,将二叉树转化为一个由括号和整数组成的字符串,返回构造出的字符串。 空节点使用一对空括号对 "()" 表示,转化后需要省略所有不影响字符…

SpringBoot集成百度人脸识别实现登陆注册功能Demo(二)

前言 上一篇SpringBoot集成百度人脸demo中我使用的是调用本机摄像头完成人脸注册,本次demo根据业务需求的不同我采用文件上传的方式实现人脸注册。 效果演示 注册 后端响应数据: 登录 后端响应数据: 项目结构 后端代码实现 1、BaiduAiUtil…

SQL 表别名 和 列别名

列表名 列表名之后 order by 可以用别名 也可以用原名, where 中不能用别名的 SQL语句执行顺序: from–>where–>group by -->having — >select --> order 第一步:from语句,选择要操作的表。 第二步&#xff1…

Bug的严重等级和优先级别与分类

一、 Bug的严重等级定义: 1、 Blocker 即系统无法执行、崩溃或严重资源不足、应用模块无法启动或异常退出、无法测试、造成系统不稳定。 严重花屏内存泄漏 用户数据丢失或破坏系统崩溃/死机/冻结模块无法启动或异常退出严重的数值计算错误功能设计与需求严重不符其…

每日一学:什么是 Harbor ?

目录 什么是 Harbor ? 一、Harbor 的优势 二、Harbor 架构构成 三、Core services 这是 Harbor 的核心功能 什么是 Harbor ? Harbor 是 VMware 公司开源的企业级 Docker Registry 项目,其目标是帮助用户迅速搭建一个企业级的 Docker Reg…

Spring MVCSpring Boot

文章目录 Spring MVC什么是MVC模式Spring MVC优点SpringMVC 运行流程SpringMVC组件SpringMVC常用的注解有哪些SpringMVC的拦截器和过滤器有什么区别?执行顺序是什么 SpringBoot对SpringBoot的理解Spring和SpringBoot的关系?SpringBoot有哪些核心注解Spri…

【PDF密码】PDF文件不能打印,为什么?

正常的PDF文件是可以打印的,如果PDF文件打开之后发现文件不能打印,我们需要先查看一下自己的打印机是否能够正常运行,如果打印机是正常的,我们再查看一下,文件中的打印功能按钮是否是灰色的状态。 如果PDF中的大多数功…

react icon ant简单使用

refer&#xff1a; 文字提示 Tooltip - Ant Design 1.首先保证已经引入了Ant 2.在组件&#xff08;页面&#xff09;引入tooltip import { Form, Tooltip } from antd; 3.在合适的位置使用tooltip&#xff1a; <span>寿命 <Tooltip title"这是寿命的说明&quo…

前端 select 标签如何创建下拉菜单?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 代码示例⭐ 代码讲解⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏…