Deep Image Prior:《Deep Image Prior》经典文献阅读总结与实现

在这里插入图片描述

文章目录

  • Deep Image Prior
    • 1. 方法原理
      • 1.1 研究动机
      • 1.2 方法
    • 2. 实验验证
      • 2.1 去噪
      • 2.2 超分辨率
      • 2.3 图像修复
      • 2.4 消融实验
    • 3. 总结


Deep Image Prior

1. 方法原理


1.1 研究动机

动机

  • 深度神经网络在图像复原和生成领域有非常好的表现一般归功于神经网络学习到了图像的先验信息
  • 网络结构本身是否具有先验信息呢?

挑战

  • 如何验证网络结构本身是否具有先验信息?
  • 无训练集,无未退化的原图作为标签,使用单张退化的图像进行恢复
  • 唯一的先验信息来自于网络结构本身

贡献

  • 发现了神经网络结构对自然信号的低阻抗性和对噪声信号具有高阻抗的隐式先验信息
  • 在去噪、超分辨率、图像修复等任务上利用这种隐式先验信息实现了非常好的效果
  • 网络仅仅使用退化的单个图像进行训练,所以没有大量数据集带来的图像先验信息,而是网络结构自身所具有的结构先验信息

1.2 方法

使用一个随机向量 z ∈ R c ′ × H ′ × W ′ z \in R^{c' \times H' \times W'} zRc×H×W,和一个神经网络( f θ ( . ) f_{\theta}(.) fθ(.))输出一个我们想要的图像 x ∈ R 3 × H × W x \in R^{3 \times H\times W} xR3×H×W
x = f θ ( z ) x = f_{\theta}(z) x=fθ(z)

然后,针对一个具体的 去噪、超分辨率或图像修复的问题,这就变为了一个最小化能量的问题(最大似然)
x ∗ = m i n x E ( x ; x 0 ) + R ( x ) x^* = \underset{x}{min}E(x;x_0) + R(x) x=xminE(x;x0)+R(x)

其中 m i n x E ( x ; x 0 ) \underset{x}{min}E(x;x_0) xminE(x;x0)是和任务相关的数据匹配项,而 R ( x ) R(x) R(x)是一个正则项。正则项目可以是简单的TV正则化,在本文中想要证明的就是网络结构本身就具有类似于TV正则化的效果,也就是:

x ∗ = m i n x E ( f θ ( z ) ; x 0 ) x^* = \underset{x}{min}E(f_{\theta}(z);x_0) x=xminE(fθ(z);x0)

为了最小化能量,我们可以从观测数据 z z z出发,或者从网络本身出发。DIP考虑的是只从网络结构本身探讨这个问题。

用一个最简单的重构损失来验证:我们使用一个网络参数化图像,然后最小化重构图像和真实图像的损失:
E ( x ; x 0 ) = ∣ ∣ x − x 0 ∣ ∣ 2 E(x;x_0) = ||x - x_0||^2 E(x;x0)=∣∣xx02

m i n θ ∣ ∣ f θ ( z ) − x 0 ∣ ∣ \underset{\theta}{min}||f_{\theta}(z) - x_0|| θmin∣∣fθ(z)x0∣∣

使用不同的 x 0 x_0 x0进行验证:

  • 真实图片作为 x 0 x_0 x0
  • 真实图片+噪声作为 x 0 x_0 x0
  • 真实图片像素点随机打乱作为 x 0 x_0 x0
  • 噪声作为 x 0 x_0 x0

从上面这幅图中可以发现,相同的神经网络对不同的数据进行恢复,如果是真实自然图片网络可以非常快地进行恢复,而对于噪声网络的恢复在迭代很多次之后才能恢复。这展现出一种网络结构的特性:对信号具有低阻抗,而对随机噪声具有高阻抗。因此我们可以在训练过程中使用 early stopping方法,在迭代一定次数后得到的图片的信号信息。


2. 实验验证

2.1 去噪

迭代2400次的时候自然信息就基本拟合了,没有出现拟合噪声信息。
迭代50k的时候就拟合了噪声信息。

和其他方法进行对比

2.2 超分辨率

2.3 图像修复

2.4 消融实验


3. 总结

关键点

  1. 神经网络对自然信息具有低阻性,对随机噪声具有高阻性
  2. 神经网络提供的隐式先验信息可以用来进行去噪、图像修复、超分辨率

优势

  1. 不需要预训练网络,不需要准备训练数据集
  2. 可以同时解决多种问题

问题

  1. 速度慢,处理一个工作需要迭代上千次
  2. 性能不稳定,对不同的噪声达到较好效果的迭代次数不同
  3. 怎么确定终止次数是一个重要问题
  4. 没有从理论上证明这种方法的可靠性(后续有其他文章证明)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/83148.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《合成孔径雷达成像算法与实现》Figure3.5

clc clear all close all%参数设置 TBP 100; %时间带宽积 T 10e-6; %脉冲持续时间%参数计算 B TBP/T; %信号带宽 K B/T; …

SolidUI社区-提示词链式思考(CoT)

背景 随着文本生成图像的语言模型兴起,SolidUI想帮人们快速构建可视化工具,可视化内容包括2D,3D,3D场景,从而快速构三维数据演示场景。SolidUI 是一个创新的项目,旨在将自然语言处理(NLP)与计算机图形学相…

2462. 雇佣 K 位工人的总代价;948. 令牌放置;1262. 可被三整除的最大和

2462. 雇佣 K 位工人的总代价 核心思想&#xff1a;分情况讨论&#xff0c;当2*candidates > n 时&#xff0c;直接取前k个工人即可&#xff1b;当2*candidates< n时&#xff0c;我们可以维护两个最小堆&#xff0c;然后不断比较堆中的值&#xff0c;然后用i,j两个指针表…

Spring 使用注解储存对象

文章目录 前言存储 Bean 对象五大注解五大注解示例配置包扫描路径读取bean的示例 方法注解 Bean Bean 命名规则重命名 Bean 前言 通过在 spring-config 中添加bean的注册内容&#xff0c;我们已经可以实现基本的Spring读取和存储对象的操作了&#xff0c;但在操作中我们发现读…

使用node-red实现一个物体地图巡航的案例

背景 随着物联网技术的快速发展,物体地图巡航已经成为了一种常见的应用场景。本文将介绍如何使用Node-RED实现一个物体地图巡航的案例。Node-RED是一个基于Node.js的可视化编程工具,它可以帮助用户快速构建流程和数据流。通过Node-RED,我们可以轻松地实现物体地图巡航的功能…

Nginx虚拟主机和日志详解

目录 1.Nginx虚拟主机1.1基于IP虚拟主机1.2基于端口虚拟主机1.3基于域名实现的虚拟主机 2.日志详解 1.Nginx虚拟主机 虚拟主机&#xff0c;Nginx配置中的多个server{}区域对应不同的业务(站点) 虚拟主机方式基于域名的虚拟主机不同的域名访问不同的站点基于IP的虚拟主机不同的…

Maven基础总结

前言 Maven 是一个项目管理工具&#xff0c;可以对 Java 项目进行构建、依赖管理。 基本要求掌握 配置Maven环境直接查。 得会在IDEA创建Maven的java项目吧、会创建Maven的web项目吧、会创建多模块项目吧。 得会配置插件pligin、依赖dependency吧 一、Maven四大特性 1、…

Spring中Bean的“一生”(生命周期)

文章目录 一、图解二、文字解析总结 一、图解 >注&#xff1a;处于同一行的执行顺序是从左往右 二、文字解析 SpringBean的生命周期总体分为四个阶段&#xff1a;实例化>属性注入>初始化>销毁 Step1 实例化Bean&#xff1a;根据配置文件中Bean的定义&#xff0c;…

Pytorch量化之Post Train Static Quantization(训练后静态量化)

使用Pytorch训练出的模型权重为fp32&#xff0c;部署时&#xff0c;为了加快速度&#xff0c;一般会将模型量化至int8。与fp32相比&#xff0c;int8模型的大小为原来的1/4, 速度为2~4倍。 Pytorch支持三种量化方式&#xff1a; 动态量化&#xff08;Dynamic Quantization&…

微服务服务拆分和远程调用

一、服务架构比较 单体架构&#xff1a;简单方便&#xff0c;高度耦合&#xff0c;扩展性差&#xff0c;适合小型项目。例如&#xff1a;学生管理系统 分布式架构&#xff1a;松耦合&#xff0c;扩展性好&#xff0c;但架构复杂&#xff0c;难度大。适合大型互联网项目&#x…

python的gui界面程序爬虫,python的gui界面怎么打开

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;python的gui界面怎么打开&#xff0c;python的gui界面程序爬虫&#xff0c;今天让我们一起来看看吧&#xff01; Python支持多种图形界面的第三方库&#xff0c;包括&#xff1a; wxWidgets Qt GTK Tkinter&#xf…

[信号与系统系列] 正弦振幅调制之差拍信号

当将具有不同频率的两个正弦曲线相乘时&#xff0c;可以创建一个有趣的音频效果&#xff0c;称为差拍音符。这种现象听起来像颤音&#xff0c;最好通过选择一个频率非常小的信号与和另一个频率大约1KHz的信号&#xff0c;把二者混合从而听到。一些乐器能够自然产生差拍音符。使…

idea如何上传项目到github(超详细)

idea如何上传项目到github 1、IDEA配置2、项目上传到本地仓库2.1、创建本地git仓库2.2、Add操作2.3、Commit操作 3、项目上传到Github4、拿到登录Github的token 1、IDEA配置 File-Settings-VersionControl-Git Git的安装路径下bin目录下的git.exe可执行文件 可以直接点 Gene…

基于TF-IDF+TensorFlow+词云+LDA 新闻自动文摘推荐系统—深度学习算法应用(含ipynb源码)+训练数据集

目录 前言总体设计系统整体结构图系统流程图 运行环境Python 环境TensorFlow环境方法一方法二 模块实现1. 数据预处理1&#xff09;导入数据2&#xff09;数据清洗3&#xff09;统计词频 2. 词云构建3. 关键词提取4. 语音播报5. LDA主题模型6. 模型构建 系统测试工程源代码下载…

十九、docker学习-Dockerfile

Dockerfile 官网地址 https://docs.docker.com/engine/reference/builder/Dockerfile其实就是我们用来构建Docker镜像的源码&#xff0c;当然这不是所谓的编程源码&#xff0c;而是一些命令的集合&#xff0c;只要理解它的逻辑和语法格式&#xff0c;就可以很容易的编写Docke…

Android 面试重点之Framework (Handler篇)

近期在网上看到不少Android 开发分享的面试经验&#xff0c;我发现基本每个面经中多多少少都有Framework 底层原理的影子。它也是Android 开发中最重要的一个部分&#xff0c;面试官一般会通过 Framework底层中的一些逻辑原理由浅入深进行提问&#xff0c;来评估应聘者的真实水…

对强缓存和协商缓存的理解

浏览器缓存的定义&#xff1a; 浏览器缓存是浏览器在本地磁盘对用户最近请求过的文档进行存储&#xff0c;当访问者再次访问同一页面时&#xff0c;浏览器就可以直接从本地磁盘加载文档。 浏览器缓存分为强缓存和协商缓存。 浏览器是如何使用缓存的&#xff1a; 浏览器缓存…

HarmonyOS应用开发者基础认证考试题库

此博文为HarmonyOS应用开发者基础认证考试的最后的大考&#xff0c;要求100分取得90分方可获取证书、现将考试的题库进行分享&#xff0c;希望能帮到大家。但是需要注意的是&#xff0c;题库会不定时的进行题目删减&#xff0c;但是大概的内容是不会进行改变的。真心希望这篇博…

MongoDB 使用总结

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…

数据结构和算法——哈希查找冲突处理方法(开放地址法-线性探测、平方探测、双散列探测、再散列,分离链接法)

目录 开放地址法&#xff08;Open Addressing&#xff09; 线性探测&#xff08;Linear Probing&#xff09; 散列表查找性能分析 平方探测&#xff08;Quadratic Probing&#xff09; 定理 平方探测法的查找与插入 双散列探测法&#xff08;Double Hashing&#xff09…