【Matlab】RBF神经网络-遗传算法(RBF-GA)函数极值寻优——非线性函数求极值

上一篇博客介绍了GRNN-GA:GRNN神经网络遗传算法(GRNN-GA)函数极值寻优——非线性函数求极值,神经网络用的是GRNN神经网络,RBF神经网络(径向基函数神经网络)和GRNN神经网络有相似之处。本篇博客将GRNN神经网络替换成RBF神经网络,希望能帮助大家快速入门RBF网络。

1.背景条件

要求:对于未知模型(函数表达式未知)求解极值。
条件:已知模型的一些输入输出数据。

程序的示例是根据用神经网络遗传算法寻优非线性函数 y = x 1 2 + x 2 2 y = x_1^2+x_2^2 y=x12+x22 的极值,输入参数有2个,输出参数有1个,易知函数有极小值0,极小值点为(0, 0)。已知的只有一些输入输出数据(用rand函数生成输入,然后代入表达式生成输出):

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=input(i,1)^2+input(i,2)^2;
end

2.RBF神经网络函数说明

newrbe

RBF神经网络参数设置函数(严格(exact)RBF网络函数)
函数形式:

net = newrbe(P,T,spread)

P:输入数据矩阵。
T:输出数据矩阵。
spread:径向基函数的扩展速度。默认为1。RBF神经网络和GRNN网络一样,都有一个 spread 参数,GRNN神经网络其实是RBF神经网络的一种变形。

例如:

net=newrbe(inputn,outputn,0.1)

近似(approximate)RBF网络函数:

net=newrb(inputn,outputn)

用 newrb() 创建 RBF网络是一个不断尝试的过程,在创建过程中,需要不断增加中间层神经元和个数,直到网络的输出误差满足预先设定的值为止。

3.近似RBF神经网络

%% 清空环境变量
clctic
%% 载入数据
load data%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);%划分训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);%% RBF网络训练
% %初始化网络结构
net=newrb(inputn,outputn); % 近似RBF网络%% RBF网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);%网络预测输出
an=sim(net,inputn_test);%网络输出反归一化
RBFoutput=mapminmax('reverse',an,outputps);%% 结果分析
error=output_test-RBFoutput;
errorsum=sum(abs(error))tocsave data net inputps outputps

运行之后得到:(ctrl + C 中止)

在这里插入图片描述

当隐藏层神经元个数为50的时候,误差已经很小了。

在这里插入图片描述

4.完整代码

data.m

用于生成神经网络拟合的原始数据。

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=input(i,1)^2+input(i,2)^2;
end
output=output';save data input output

RBF.m

用函数输入输出数据训练RBF神经网络,使训练后的网络能够拟合非线性函数输出,保存训练好的网络用于计算个体适应度值。根据非线性函数方程随机得到该函数的4000组输入输出数据,存储于data中,其中input为函数输入数据,output为函数对应输出数据,从中随机抽取3900组训练数据训练网络,100组测试数据测试网络拟合性能。最后保存训练好的网络。

%% 清空环境变量
clctic
%% 载入数据
load data%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);%划分训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);%% RBF网络训练
% %初始化网络结构
net=newrbe(inputn,outputn,0.1); % 严格RBF网络
%net=newrb(inputn,outputn); % 近似RBF网络
view(net)%% RBF网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);%网络预测输出
an=sim(net,inputn_test);%网络输出反归一化
RBFoutput=mapminmax('reverse',an,outputps);%% 结果分析
error=output_test-RBFoutput;
errorsum=sum(abs(error))figure(1);
plot(RBFoutput,':og');
hold on
plot(output_test,'-*');
legend('Predictive output','Expected output','fontsize',10);
title('RBF network output','fontsize',12);
xlabel("samples",'fontsize',12);figure(2);
plot(error,'-*');
title('RBF Neural network prediction error');
xlabel("samples",'fontsize',12);figure(3);
plot(100*(output_test-RBFoutput)./output_test,'-*');
title('RBF Neural network prediction error percentage (%)');
xlabel("samples",'fontsize',12);tocsave data net inputps outputps

Code.m

编码成染色体。

function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% ret        output: 染色体的编码值
flag=0;
while flag==0pick=rand(1,length(lenchrom));ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中flag=test(lenchrom,bound,ret);     %检验染色体的可行性
end

fun.m

把训练好的RBF神经网络预测输出作为个体适应度值。

function fitness = fun(x)
% 函数功能:计算该个体对应适应度值
% x           input     个体
% fitness     output    个体适应度值%
load data net inputps outputps%数据归一化
x=x';
inputn_test=mapminmax('apply',x,inputps);%网络预测输出
an=sim(net,inputn_test);%网络输出反归一化
fitness=mapminmax('reverse',an,outputps);

对于求极小值的函数,适应度可以设为RBF网络预测结果,如果需要求极大值,可以对适应度取反。

Select.m

选择操作采用轮盘赌法从种群中选择适应度好的个体组成新种群。

function ret=select(individuals,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input  : 种群信息
% sizepop     input  : 种群规模
% ret         output : 经过选择后的种群fitness1=1./individuals.fitness;
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
index=[]; 
for i=1:sizepop   %转sizepop次轮盘pick=rand;while pick==0    pick=rand;        endfor i=1:sizepop    pick=pick-sumf(i);        if pick<0        index=[index i];            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体endend
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals;

Cross.m

交叉操作从种群中选择两个个体,按一定概率交叉得到新个体。

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体for i=1:sizepop  %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)% 随机选择两个染色体进行交叉pick=rand(1,2);while prod(pick)==0pick=rand(1,2);endindex=ceil(pick.*sizepop);% 交叉概率决定是否进行交叉pick=rand;while pick==0pick=rand;endif pick>pcrosscontinue;endflag=0;while flag==0% 随机选择交叉位pick=rand;while pick==0pick=rand;endpos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同pick=rand; %交叉开始v1=chrom(index(1),pos);v2=chrom(index(2),pos);chrom(index(1),pos)=pick*v2+(1-pick)*v1;chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性if   flag1*flag2==0flag=0;else flag=1;end    %如果两个染色体不是都可行,则重新交叉endend
ret=chrom;

test.m

检验染色体的可行性。

function flag=test(lenchrom,bound,code)
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% code       output: 染色体的编码值x=code; %先解码
flag=1;
if (x(1)<bound(1,1))&&(x(2)<bound(2,1))&&(x(1)>bound(1,2))&&(x(2)>bound(2,2))flag=0;
end

Mutation.m

变异操作从种群中随机选择一个个体,按一定概率变异得到新个体。

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,pop,bound)
% 本函数完成变异操作
% pcorss                input  : 变异概率
% lenchrom              input  : 染色体长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% opts                  input  : 变异方法的选择
% pop                   input  : 当前种群的进化代数和最大的进化代数信息
% ret                   output : 变异后的染色体
for i=1:sizepop   %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,%但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)% 随机选择一个染色体进行变异pick=rand;while pick==0pick=rand;endindex=ceil(pick*sizepop);% 变异概率决定该轮循环是否进行变异pick=rand;if pick>pmutationcontinue;endflag=0;while flag==0% 变异位置pick=rand;while pick==0      pick=rand;endpos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异v=chrom(i,pos);        v1=v-bound(pos,1);        v2=bound(pos,2)-v;        pick=rand; %变异开始        if pick>0.5delta=v2*(1-pick^((1-pop(1)/pop(2))^2));chrom(i,pos)=v+delta;elsedelta=v1*(1-pick^((1-pop(1)/pop(2))^2));chrom(i,pos)=v-delta;end   %变异结束flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性end
end
ret=chrom;

Genetic.m

%% 清空环境变量
clc
% clear%% 初始化遗传算法参数
%初始化参数
maxgen=100;                         %进化代数,即迭代次数
sizepop=20;                        %种群规模
pcross=[0.4];                       %交叉概率选择,0和1之间
pmutation=[0.2];                    %变异概率选择,0和1之间lenchrom=[1 1];          %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5];  %数据范围individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体
avgfitness=[];                      %每一代种群的平均适应度
bestfitness=[];                     %每一代种群的最佳适应度
bestchrom=[];                       %适应度最好的染色体%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop%随机产生一个种群individuals.chrom(i,:)=Code(lenchrom,bound);   x=individuals.chrom(i,:);%计算适应度individuals.fitness(i)=fun(x);   %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness]; %% 迭代寻优
% 进化开始
for i=1:maxgeni% 选择individuals=Select(individuals,sizepop); avgfitness=sum(individuals.fitness)/sizepop;% 交叉individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);% 变异individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);% 计算适应度 for j=1:sizepopx=individuals.chrom(j,:); %解码individuals.fitness(j)=fun(x);   end%找到最小和最大适应度的染色体及它们在种群中的位置[newbestfitness,newbestindex]=min(individuals.fitness);[worestfitness,worestindex]=max(individuals.fitness);% 代替上一次进化中最好的染色体if bestfitness>newbestfitnessbestfitness=newbestfitness;bestchrom=individuals.chrom(newbestindex,:);endindividuals.chrom(worestindex,:)=bestchrom;individuals.fitness(worestindex)=bestfitness;avgfitness=sum(individuals.fitness)/sizepop;trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
disp('适应度                   变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);

5.代码使用说明

上述代码运行顺序

data.m 生成数据(如果已有 input output 数据可跳过),
RBF.m 进行RBF神经网络训练及函数拟合,
Genetic.m(主函数)利用遗传算法求极值。

求最大值的方法

上述代码用于求解最小值,对于求解最大值的需求,可以在适应度函数里面,对适应度计算结果求反,把求解最大值的问题转化为求解最小值的问题。

例如:对于非线性函数 y = − ( x 1 2 + x 2 2 ) + 4 y = -(x_1^2+x_2^2)+4 y=(x12+x22)+4

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=-(input(i,1)^2+input(i,2)^2)+4;
end

求最大值时,需要在 fun.m 里面,修改最后一行代码:

fitness=-mapminmax('reverse',an,outputps);

注意:每次运行结果不尽相同。

6.代码运行结果

y = x 1 2 + x 2 2 y = x_1^2+x_2^2 y=x12+x22 求极小值

RBF神经网络拟合

运行RBF.m之后:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

输出:

errorsum =0.0013历时 9.232266 秒。

注意:每次运行结果不尽相同。

遗传算法寻优

运行主函数 Genetic.m之后:

在这里插入图片描述

输出:

...
i =100适应度                   变量0.0001   -0.0042    0.0074历时 20.067215 秒。

最终结果最优个体为(-0.0042,0.0074),适应度为 0.0001。

注意:每次运行结果不尽相同。

参考

《MATLAB神经网络30个案例分析》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/85634.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[C++项目] Boost文档 站内搜索引擎(4): 搜索的相关接口的实现、线程安全的单例index接口、cppjieba分词库的使用、综合调试...

有关Boost文档搜索引擎的项目的前三篇文章, 已经分别介绍分析了: 项目背景: &#x1fae6;[C项目] Boost文档 站内搜索引擎(1): 项目背景介绍、相关技术栈、相关概念介绍…文档解析、处理模块parser的实现: &#x1fae6;[C项目] Boost文档 站内搜索引擎(2): 文档文本解析模块…

ffmpeg命令行是如何打开vf_scale滤镜的

前言 在ffmpeg命令行中&#xff0c;ffmpeg -i test -pix_fmt rgb24 test.rgb&#xff0c;会自动打开ff_vf_scale滤镜&#xff0c;本章主要追踪这个流程。 通过gdb可以发现其基本调用栈如下&#xff1a; 可以看到&#xff0c;query_formats&#xff08;&#xff09;中创建的v…

C++——vector介绍及其简要模拟实现

vector的介绍 此主题介绍转载自(https://cplusplus.com/reference/vector/vector/) 1.vector是一个表示可变大小数组的序列容器 2.vector同数组一样&#xff0c;采用连续存储空间来存储元素&#xff0c;这样可以用下标来对vector中的元素进行访问&#xff0c;但是vector的大…

Unity ML-Agent

介绍: 环境搭建 待为完序

手机便签中可以打勾的圆圈或小方块怎么弄?

在日常的生活和工作中&#xff0c;很多网友除了使用手机便签来记录灵感想法、读书笔记、各种琐事、工作事项外&#xff0c;还会用它来记录一些清单&#xff0c;例如待办事项清单、读书清单、购物清单、旅行必备物品清单等。 在按照记录的清单内容来执行的时候&#xff0c;为了…

进程间通信(IPC)的几种方式

进程间通信&#xff08;IPC&#xff09; 1.常见的通信方式2.低级IPC方法文件 3.常用于本机的IPC机制3.1无名管道pipe3.2命名管道FIFO3.3消息队列MessageQueue3.4共享内存SharedMemory3.5信号量Semaphore3.6信号Signal3.7unix域套接字 4.不同计算机上的IPC机制5.IPC机制的数据拷…

LeetCode150道面试经典题--找出字符串中第一个匹配项的下标(简单)

1.题目 给你两个字符串 haystack 和 needle &#xff0c;请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标&#xff08;下标从 0 开始&#xff09;。如果 needle 不是 haystack 的一部分&#xff0c;则返回 -1 。 2.示例 3.思路 回溯算法&#xff1a;首先将…

百度智能云:千帆大模型平台接入Llama 2等33个大模型,上线103个Prompt模板

大家好&#xff0c;我是herosunly。985院校硕士毕业&#xff0c;现担任算法研究员一职&#xff0c;热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名&#xff0c;CCF比赛第二名&#xff0c;科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的…

Rest 优雅的url请求处理风格及注意事项

&#x1f600;前言 本篇博文是关于Rest 风格请求的应用和注意事项&#xff0c;希望能够帮助到您&#x1f60a; &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章可以帮助到大家&#xff0c;您…

08-3_Qt 5.9 C++开发指南_Graphics View绘图架构

文章目录 1. 场景、视图与图形项1.1 场景1.2 视图1.3 图形项 2. Graphics View 的坐标系统2.1 图形项坐标2.2 视图坐标2.3 场景坐标2.4 坐标映射 3. Graphics View 相关的类3.1 QGraphicsView 类的主要接口函数3.2 QGraphicsScene 类的主要接口函数3.3 图形项 4. 实例介绍 1. 场…

【2023 华数杯全国大学生数学建模竞赛】 C题 母亲身心健康对婴儿成长的影响 45页论文及python代码

【2023 华数杯全国大学生数学建模竞赛】 C题 母亲身心健康对婴儿成长的影响 45页论文及python代码 1 题目 母亲是婴儿生命中最重要的人之一&#xff0c;她不仅为婴儿提供营养物质和身体保护&#xff0c; 还为婴儿提供情感支持和安全感。母亲心理健康状态的不良状况&#xff0c…

Java线程池

线程池 1. 概念2. 工作流程3. ThreadPoolExecutor参数 1. 概念 线程池是一种利用池化技术思想来实现的线程管理技术&#xff0c;主要是为了复用线程、便利地管理线程和任务、并将线程的创建和任务的执行解耦开来。我们可以创建线程池来复用已经创建的线程来降低频繁创建和销毁…

在pycharm中使用Git上传代码到Gitee/GitHub(适合新手小白的超级详细步骤讲解)

目录 一、在pycharm中下载gitee/github插件二、注册自己的Gitee / Githhub账号三、创建仓库三、选择想要上传的代码文件四、修改代码后上传到Gitee/GitHub 因为Gitee和GitHub使用方法差不多&#xff0c;所以本文以将代码上传到Gitee为例&#xff0c;GitHub操作类似。 一、在py…

vivado tcl创建工程和Git管理

一、Tcl工程创建 二、Git版本管理 对于创建完成的工程需要Git备份时&#xff0c;不需要上传完整几百或上G的工程&#xff0c;使用tcl指令创建脚本&#xff0c;并只将Tcl脚本上传&#xff0c;克隆时&#xff0c;只需要克隆tcl脚本&#xff0c;使用vivado导入新建工程即可。 优…

【机器学习2】什么是Jupyter notebook 新手使用Jupter notebook

什么是Jupyter notebook? Jupyter Notebook&#xff08;此前被称为 IPython notebook&#xff09;是一个交互式笔记本&#xff0c;支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序&#xff0c;便于创建和共享程序文档&#xff0c;支持实时代码&#x…

list的使用和模拟实现

目录 1.list的介绍及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.2.5 list modifiers 2.为什么使用迭代器&#xff1f; 3.list的模拟实现 3.1完整代码 3.2代码解析 4.list与…

大数据-玩转数据-Flink-Transform

一、Transform 转换算子可以把一个或多个DataStream转成一个新的DataStream.程序可以把多个复杂的转换组合成复杂的数据流拓扑. 二、基本转换算子 2.1、map&#xff08;映射&#xff09; 将数据流中的数据进行转换, 形成新的数据流&#xff0c;消费一个元素并产出一个元素…

iOS开发-WebRTC本地直播高分辨率不显示画面问题

iOS开发-WebRTC本地直播高分辨率不显示画面问题 在之前使用WebRTC结合ossrs进行推流时候&#xff0c;ossrs的播放端无法看到高分辨率画面问题。根据这个问题&#xff0c;找到了解决方案。 一、WebRTC是什么 WebRTC是什么呢&#xff1f; WebRTC (Web Real-Time Communicatio…

【学习FreeRTOS】第4章——FreeRTOS任务创建与删除

1.任务创建和删除的API函数 任务的创建和删除本质就是调用FreeRTOS的API函数 动态方式创建任务——xTaskCreate()静态方式创建任务——xTaskCreateStatic()删除任务——vTaskDelete() 动态创建任务&#xff1a;任务的任务控制块以及任务的栈空间所需的内存&#xff0c;均由 F…

[Kubernetes]Kubeflow Pipelines - 基本介绍与安装方法

1. 背景 近些年来&#xff0c;人工智能技术在自然语言处理、视觉图像和自动驾驶方面都取得不小的成就&#xff0c;无论是工业界还是学术界大家都在惊叹一个又一个的模型设计。但是对于真正做过算法工程落地的同学&#xff0c;在惊叹这些模型的同时&#xff0c;更多的是在忧虑如…