大语言模型之一 Attention is all you need ---Transformer

大语言模型已经在很多领域大显身手,其应用包括只能写作、音乐创作、知识问答、聊天、客服、广告文案、论文、新闻、小说创作、润色、会议/文章摘要等等领域。在商业上模型即产品、服务即产品、插件即产品,任何形态的用户可触及的都可以是产品,商业付费一般都是会员制或者按次收费。当前大预言模型的核心结构是基于Transformer。

大模型之所以效果超出预期,一个很重要的原因是模型大到一定程度之后会发生质变,模型的记忆性和泛化性可以兼得。而Transformer可以令模型很大,大到在NLP领域模型可以发生质变,这使得应用得以井喷式出现在各个领域,但是也有一些问题存在需要进一步解决,这类大模型本质上是内容生成,生成的内容因符合如下三原则:
有用的(Helpful);
可信的(Honest);
无害的(Harmless)

仅仅基于Transformer框架的大预言模型(又称pretraining model)还不足以完全满足商业应用要求,业界的发展放到后续博客展开,本篇先谈谈大语言模型的核心架构Transformer。

Transformer 源于谷歌Brain 2017年针对机器翻译任务提出的,《Attention is all you need》论文详细解释了网络结构,在这个之前网络结构多采用RNN、CNN、LSTM、GRU等网络形式,这篇文章提出了一个新的核心结构-Transformer,其针对RNN网络在机器翻译上的弱点重新设计的结构,传统的Encoder-Decoder架构在建模过程中,下一个时刻的计算过程会依赖于上一个时刻的输出,而这种固有的属性就限制了传统的Encoder-Decoder模型就不能以并行的方式进行计算。

本文源码已托管到 github link地址

模型结构介绍

谷歌提出的Transformer也是包括Encoder和decoder两个部分,只是这两个部分核心是Attention结构,而非CNN、LSTM、GRU等这些结构。

对于Encoder,包含两层,一个self-attention层和一个前馈神经网络,self-attention能帮助当前节点不仅仅只关注当前的词,从而能获取到上下文的语义。Decoder也包含encoder提到的两层网络,但是在这两层中间还有一层attention层,帮助当前节点获取到当前需要关注的重点内容。
在这里插入图片描述
Transformer 模型架构
模型需要对输入的数据进行一个embedding操作(图中红色框框),Attention虽然可以提取出关注的信息,但是没有时序信息,而Position Encoding正是将时序信息转为位置信息来实现的,enmbedding结束之后加上位置编码,然后再输入到encoder层,self-attention处理完数据后把数据送给前馈神经网络(蓝色Feed Forward),前馈神经网络的计算可以并行,得到的输出会输入到下一个encoder。
请添加图片描述

  • Encoder 编码器
    • Multi-Head Attention
      • 多头自注意力机制,可以通过输入信息并行计算出查询-键-值(Query-Key-Value),来让后续的网络使用context来知道当前运算需要关注哪些信息。注意这里的计算QKV的矩阵也是网络参数的一部分,通过训练可以让网络的注意力更有效且集中。因为NLP领域都是时序上因果的,因而改进模型采用了因果多头自注意力模型。
    • Add 残差连接
      • 这里主要残差连接的主要作用是利用恒等映射来训练更深层的网络(输入和输出恒等),多头注意力和层归一化,前馈神经网络和层归一化,两部分均采用了残差连接。
    • Norm 层归一化
      • Layer Normalization 的作用是把神经网络中以样本维度为一层来进行归一化运算,以起到加快训练速度,加速收敛的作用。新的改进都是将Layer Normalization放在前面而非后面。
    • Feed Forward 前馈神经网络
      • 将通过了注意力层之后通过加权机制提取出的所关注信息,根据关注的信息在语义空间中做转换。
      • 因此MLP将Multi-Head Attention得到的向量再投影到一个更大的空间(论文里将空间放大了4倍)在那个大空间里可以更方便地提取需要的信息(使用Relu激活函数),最后再投影回token向量原来的空间。
  • Decoder
    • 和 Encoder基本一样,组成分为Masked Multi-Head Attention,Masked Encoder-Decoder Attention(这一层就是连接编码器和解码器的注意力层,后续由于GPT只用了编码器,因此删除了这一层。)和Feed Forward神经网络,三个部分的每一个部分,都有一个残差连接,后接一个Layer Normalization。下面介绍Decoder的Masked Self-Attention和Encoder-Decoder Attention两部分,
    • Masked Multi-Head Attention
      • Self-Attention的机制有一个问题,在训练过程中的完整标注数据都会暴露在 Decoder 中,这显然是不对的,我们需要对 Decoder 的输入进行一些处理,该处理被称为 Mask,将数据有选择的暴露给Decoder(在GPT中相当于遮住了后面的所有数据,由网络依次生成)。
    • Multi-Head Attention
    • Add 残差连接
    • Norm 层归一化
    • Feed Forward 前馈神经网络
  • 线性层和Softmax
    经过编码器和解码器最后是一层全连接层和SoftMax( 后面改进的大语言模型采用Gaussian Error Linear Units function)。线性层是一个简单的全连接的神经网络,它将解码器堆栈生成的向量投影到一个更大的向量,称为logits向量。Softmax层(Softmax 是用于多类分类问题的激活函数)将向量转换为概率(全部为正值,总和为1.0)。选择概率最高的单元,并生成与其关联的单词作为此时间步的输出。

模型Pytorch实现

红色部分input&output embedding。

class Embedder(nn.Module):def __init__(self, vocab_size, d_model):super().__init__()self.embed = nn.Embedding(vocab_size, d_model)def forward(self, x):#[123, 0, 23, 5] -> [[..512..], [...512...], ...]return self.embed(x)

位置编码

如下代码所示,其值会和上面的embedding相加后输入编解码模块。

class PositionalEncoder(nn.Module):def __init__(self, d_model: int, max_seq_len: int = 80):super().__init__()self.d_model = d_model#Create constant positional encoding matrixpos_matrix = torch.zeros(max_seq_len, d_model)# for pos in range(max_seq_len):#     for i in range(0, d_model, 2):#         pe_matrix[pos, i] = math.sin(pos/1000**(2*i/d_model))#         pe_matrix[pos, i+1] = math.cos(pos/1000**(2*i/d_model))## pos_matrix = pe_matrix.unsqueeze(0) # Add one dimension for batch sizeden = torch.exp(-torch.arange(0, d_model, 2) * math.log(1000) / d_model)pos = torch.arange(0, max_seq_len).reshape(max_seq_len, 1)pos_matrix[:, 1::2] = torch.cos(pos * den)pos_matrix[:, 0::2] = torch.sin(pos * den)pos_matrix = pos_matrix.unsqueeze(0)self.register_buffer('pe', pos_matrix) #Register as persistent bufferdef forward(self, x):# x is a sentence after embedding with dim (batch, number of words, vector dimension)seq_len = x.size()[1]x = x + self.pe[:, :seq_len]return x

self-attention

在这里插入图片描述

## Scaled Dot-Product Attention layer
def scaled_dot_product_attention(q, k, v, mask=None, dropout=None):# Shape of q and k are the same, both are (batch_size, seq_len, d_k)# Shape of v is (batch_size, seq_len, d_v)attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.shape[-1]) # size (bath_size, seq_len, d_k)# Apply mask to scores# <pad>if mask is not None:attention_scores = attention_scores.masked_fill(mask == 0, value=-1e9)# Softmax along the last dimensionattention_weights = F.softmax(attention_scores, dim=-1)if dropout is not None:attention_weights = dropout(attention_weights)output = torch.matmul(attention_weights, v)return output

Multi-Head Attention layer

在这里插入图片描述

# Multi-Head Attention layer
class MultiHeadAttention(nn.Module):def __init__(self, n_heads, d_model, dropout=0.1):super().__init__()self.n_heads = n_headsself.d_model = d_modelself.d_k = self.d_v = d_model // n_heads# self attention linear layers#Linear layers for q, k, v vectors generation in different headsself.q_linear_layers = []self.k_linear_layers = []self.v_linear_layers = []for i in range(n_heads):self.q_linear_layers.append(nn.Linear(d_model, self.d_k))self.k_linear_layers.append(nn.Linear(d_model, self.d_k))self.v_linear_layers.append(nn.Linear(d_model, self.d_v))self.dropout = nn.Dropout(dropout)self.out = nn.Linear(n_heads*self.d_v, d_model)def forward(self, q, k, v, mask=None):multi_head_attention_outputs = []for q_linear, k_linear, v_linear in zip(self.q_linear_layers,self.k_linear_layers,self.v_linear_layers):new_q = q_linear(q) # size: (batch_size, seq_len, d_k)new_k = q_linear(k) # size: (batch_size, seq_len, d_k)new_v = q_linear(v) # size: (batch_size, seq_len, d_v)# Scaled Dot-Product attentionhead_v = scaled_dot_product_attention(new_q, new_k, new_v, mask, self.dropout) # (batch_size, seq_len,multi_head_attention_outputs.append(head_v)# Concat# import pdb; pdb.set_trace()concat = torch.cat(multi_head_attention_outputs, -1) # (batch_size, seq_len, n_heads*d_v)# Linear layer to recover to original shapoutput = self.out(concat) # (batch_size, seq_len, d_model)return output

翻译实例

这里github链接
以英语到法语的翻译实例展示Transformer这篇文章所述网络模型结构和其用法。Python安装版本信息如下:

Python 3.7.16
torch==2.0.1
torchdata==0.6.1
torchtext==0.15.2
spacy==3.6.0
numpy==1.25.2
pandas
times
portalocker==2.7.0

数据处理

分词和词映射为张量化的数字

使用torchtext提供的工具比较方便创建一个便于处理迭代的语音翻译模型的数据集,首先是从原始文本分词、构建词汇表以及标记为数字化张量。尽管torchtext提供了基本的英语分词支持,但是这里的翻译中除了英语还有法语,因而使用了分词python库Spacy。

首先是创建环境,接下来是下载英语和法语的分词器,因为这是一个很小的例子,因而使用新闻的spacy语言处理模型即可:

#python3 -m spacy download en_core_web_sm
#python3 -m spacy download fr_core_news_sm

如下图所示:
请添加图片描述

接下来是将数据进行分词,然后将词映射为张量化的数字

#Data processing
import spacy
from torchtext.data.utils import get_tokenizer
from collections import Counter
import io
from torchtext.vocab import vocabsrc_data_path = 'data/english.txt'
trg_data_path = 'data/french.txt'en_tokenizer = get_tokenizer('spacy', language='en_core_web_sm')
fr_tokenizer = get_tokenizer('spacy', language='fr_core_news_sm')def build_vocab(filepath, tokenizer):counter = Counter()with io.open(filepath, encoding="utf8") as f:for string_ in f:counter.update(tokenizer(string_))return vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])en_vocab = build_vocab(src_data_path, en_tokenizer)
fr_vocab = build_vocab(trg_data_path, fr_tokenizer)def data_process(src_path, trg_path):raw_en_iter = iter(io.open(src_path, encoding="utf8"))raw_fr_iter = iter(io.open(trg_path, encoding="utf8"))data = []for (raw_en, raw_fr) in zip (raw_en_iter, raw_fr_iter):en_tensor_ = torch.tensor([en_vocab[token] for token in en_tokenizer(raw_en)], dtype=torch.long)fr_tensor_ = torch.tensor([fr_vocab[token] for token in fr_tokenizer(raw_fr)], dtype= torch.long)data.append((en_tensor_, fr_tensor_))return datatrain_data = data_process(src_data_path, trg_data_path)

DataLoader

DataLoader是torch.utils.data提供的方法,其将数据集和采样器组合在一起,为给定的数据集提供可迭代的对象。DataLoader 支持单进程或多进程加载、自定义加载顺序和可选的自动批处理(合并)和内存固定的映射式和可迭代式数据集。
collate_fn(可选),它将样本列表合并以形成张量的小批量。在使用映射样式数据集的批量加载时使用。

#Train transformer
d_model= 512
n_heads = 8
N = 6
src_vocab_size = len(en_vocab.vocab)
trg_vocab_size = len(fr_vocab.vocab)BATH_SIZE = 32
PAD_IDX = en_vocab['<pad>']
BOS_IDX = en_vocab['<bos>']
EOS_IDX = en_vocab['<eos>']from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoaderdef generate_batch(data_batch):en_batch, fr_batch = [], []for (en_item, fr_item) in data_batch:en_batch.append(torch.cat([torch.tensor([BOS_IDX]), en_item, torch.tensor([EOS_IDX])], dim=0))fr_batch.append(torch.cat([torch.tensor([BOS_IDX]), fr_item, torch.tensor([EOS_IDX])], dim=0))en_batch = pad_sequence(en_batch, padding_value=PAD_IDX)fr_batch = pad_sequence(fr_batch, padding_value=PAD_IDX)return en_batch, fr_batchtrain_iter = DataLoader(train_data, batch_size=BATH_SIZE, shuffle=True, collate_fn=generate_batch)

训练的输出如下:
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/86391.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AWS——04篇(AWS之Amazon S3(云中可扩展存储)-02——EC2访问S3存储桶)

AWS——04篇&#xff08;AWS之Amazon S3&#xff08;云中可扩展存储&#xff09;-02——EC2访问S3存储桶&#xff09; 1. 前言2. 创建EC2实例 S3存储桶3. 创建IAM角色4. 修改EC2的IAM 角色5. 连接EC2查看效果5.1 连接EC25.2 简单测试5.2.1 查看桶内存储情况5.2.2 复制本地文件…

PHP利用PCRE回溯次数限制绕过某些安全限制实战案例

目录 一、正则表达式概述 有限状态自动机 匹配输入的过程分别是&#xff1a; DFA&#xff08;确定性有限状态自动机&#xff09; NFA&#xff08;非确定性有限状态自动机&#xff09; 二、回溯的过程 三、 PHP 的 pcre.backtrack_limit 限制利用 例题一 回溯绕过步骤 &…

Springboot整合Druid

导入依赖 <!-- druid连接--><dependency><groupId>com.alibaba</groupId><artifactId>druid-spring-boot-starter</artifactId><version>1.1.10</version></dependency> #配置数据源 spring:datasource:driver…

JavaScript中的交互的方式alert,prompt,confirm的用法

一.alert的用法 1.alert 它会显示一条信息,弹出的这个带有信息的小窗口被称为模态窗。“modal” 意味着用户不能与页面的其他部分&#xff08;例如点击其他按钮等&#xff09;进行交互&#xff0c;直到他们处理完窗口。在上面示例这种情况下 —— 直到用户点击“确定”按钮。 …

信息安全:防火墙技术原理与应用.

信息安全&#xff1a;防火墙技术原理与应用. 防火墙是网络安全区域边界保护的重要技术。为了应对网络威胁&#xff0c;联网的机构或公司将自己的网络与公共的不可信任的网络进行隔离&#xff0c;其方法是根据网络的安全信任程度和需要保护的对象&#xff0c;人为地划分若干安全…

本地项目如何连接git远程仓库

在本地新建项目后&#xff0c;如何连接git远程仓库呢&#xff1f;步骤如下&#xff1a; 第一步&#xff0c; 首先我们在git上新建仓库&#xff0c;设置模板可勾选Readme文件。&#xff08;readme文件的创建是为了介绍所写代码的一些详细信息,为了之后更好的维护。&#xff09;…

安卓改透明屏有哪些方法和步骤?壁纸、主题、软件

安卓改透明屏是指将安卓手机的屏幕背景变为透明&#xff0c;使得手机的背景图像或者壁纸能够透过屏幕显示出来。 这样的改变可以让手机的界面更加个性化&#xff0c;也能够增加手机的美观度。 要实现安卓手机的透明屏&#xff0c;可以通过以下几种方法&#xff1a; 1. 使用透…

[保研/考研机试] KY80 进制转换 北京大学复试上机题 C++实现

题目链接&#xff1a; KY80 进制转换https://www.nowcoder.com/share/jump/437195121691735660774 描述 写出一个程序&#xff0c;接受一个十六进制的数值字符串&#xff0c;输出该数值的十进制字符串(注意可能存在的一个测试用例里的多组数据)。 输入描述&#xff1a; 输…

嵌入式开发的学习与未来展望:借助STM32 HAL库开创创新之路

引言&#xff1a; 嵌入式开发作为计算机科学领域的重要分支&#xff0c;为我们的日常生活和产业发展提供了无限的可能。STMicroelectronics的STM32系列芯片以其出色的性能和广泛的应用领域而备受关注。而STM32 HAL库作为嵌入式开发的高级库&#xff0c;为学习者提供了更高效、更…

【BASH】回顾与知识点梳理(二十一)

【BASH】回顾与知识点梳理 二十一 二十一. Linux 的文件权限与目录配置21.1 使用者与群组属主(文件拥有者)属组(群组概念)其他人的概念root(万能的天神)Linux 用户身份与群组记录的文件 21.2 Linux 文件权限概念Linux 文件属性Linux 文件权限的重要性 21.3 如何改变文件属性与权…

嵌入式Linux驱动开发系列五:Linux系统和HelloWorld

三个问题 了解Hello World程序的执行过程有什么用? 编译和执行&#xff1a;Hello World程序的执行分为两个主要步骤&#xff1a;编译和执行。编译器将源代码转换为可执行文件&#xff0c;然后计算机执行该文件并输出相应的结果。了解这个过程可以帮助我们理解如何将代码转化…

5.PyCharm基础使用及快捷键

在前几篇文章中介绍了PyCharm的安装和汉化,本篇文章一起来看一下PyCharm的基本用法和一些快捷键的使用方法。 本篇文章PyCharm的版本为PyCharm2023.2 新建项目和运行 打开工具,在菜单中——文件——新建项目 选择项目的创建位置(注意最好不要使用中文路径和中文名项目名称…

C#在自动化领域的应用前景与潜力

人机界面&#xff08;HMI&#xff09;开发&#xff1a;使用C#开发人机界面软件&#xff0c;实现与自动化设备的交互和监控。C#的图形界面设计能力和丰富的控件库使得开发人员能够创建直观、易用的界面。 数据采集与处理&#xff1a;C#可以与各种传感器、设备进行数据通信和采集…

stable-diffusion 模型效果+prompt

摘自个人印象笔记&#xff0c;图不完整可查看原笔记&#xff1a;https://app.yinxiang.com/fx/55cda0c6-2af5-4d66-bd86-85da79c5574ePrompt运用规则及技巧 &#xff1a; 1. https://publicprompts.art/&#xff08;最适用于OpenArt 线上模型 https://openart.ai/&#xff09;…

PyTorch翻译官网教程-LANGUAGE MODELING WITH NN.TRANSFORMER AND TORCHTEXT

官网链接 Language Modeling with nn.Transformer and torchtext — PyTorch Tutorials 2.0.1cu117 documentation 使用 NN.TRANSFORMER 和 TORCHTEXT进行语言建模 这是一个关于训练模型使用nn.Transformer来预测序列中的下一个单词的教程。 PyTorch 1.2版本包含了一个基于论…

Flink源码之JobMaster启动流程

Flink中Graph转换流程如下&#xff1a; Flink Job提交时各种类型Graph转换流程中&#xff0c;JobGraph是Client端形成StreamGraph后经过Operator Chain优化后形成的&#xff0c;然后提交给JobManager的Restserver&#xff0c;最终转发给JobManager的Dispatcher处理。 Completa…

Jmeter —— jmeter设置HTTP信息头管理器模拟请求头

HTTP信息头管理器 HTTP信息头管理器是在有需要模拟请求头部的时候进行设置的&#xff0c;添加方式 是 右击线程组 -- 配置元件 -- HTTP信息头管理器 可以通过抓包工具或者F12获取http请求的header头部信息&#xff1b;如下图&#xff1a; 复制并点击jmeter中的从剪贴板添加&am…

文盘 Rust -- tokio 绑定 cpu 实践

tokio 是 rust 生态中流行的异步运行时框架。在实际生产中我们如果希望 tokio 应用程序与特定的 cpu core 绑定该怎么处理呢&#xff1f;这次我们来聊聊这个话题。 首先我们先写一段简单的多任务程序。 use tokio::runtime; pub fn main() {let rt runtime::Builder::new_mu…

ffplay数据结构分析(一)

本文为相关课程的学习记录&#xff0c;相关分析均来源于课程的讲解&#xff0c;主要学习音视频相关的操作&#xff0c;对字幕的处理不做分析 下面我们对ffplay的相关数据结构进行分析&#xff0c;本章主要是对PacketQueue的讲解 struct MyAVPacketList和PacketQueue队列 ffp…

11-数据结构-栈和队列的应用(C语言)

栈和队列的应用 目录 栈和队列的应用 一、括号匹配&#xff08;栈&#xff09; 二、表达式的各种转换 (1)中缀转后缀(手工) (2)后缀转中缀表达式(手工) (3)中缀转后缀(栈) (4)中缀转后缀&#xff08;树&#xff09; (5)后缀表达式求值 (6)中缀表达式求值&#xff08;栈…