android 如何分析应用的内存(十八)终章——使用Perfetto查看内存与调用栈之间的泄露

android 如何分析应用的内存(十八)

在前面两篇文章中,先是介绍了如何用AS查看Android的堆内存,然后介绍了使用MAT查看
Android的堆内存。AS能够满足基本的内存分析需求,但是无法进行多个堆的综合比较,因此引入了MAT工具。它可以很好的在两个堆之间进行比较。两个工具已经能解决95%的内存问题了。

但是在一些极端情况下,如多线程带来的内存泄漏,上面两个工具可能就不太好定位问题,即泄漏点的调用栈和调用线程了。

对于Android来讲,怎样才能定位这种多线程调用带来的内存呢?下面是一些经验之谈:

  1. 如果能够添加代码,对于不同的线程,在泄露的对象上,添加一个字段,用于表示线程的id。此方法比较简单,就不再赘述
  2. 如果不能添加代码,那么就需要同时录制java的调用栈和java的堆。根据在同时间段,进行逻辑比较,得出是哪一个调用栈导致的内存泄露。如,通过比较哪个调用栈调用的次数最多,哪个调用栈分配的内存最多。甚至需要在一段时间间隔之间做差分,来获得泄露的对象和调用栈之间的关系。这些方法往往需要一定的经验进行逻辑处理。

本文将围绕不能添加代码的情况,进行分析这种极端情况。

Android Studio虽然提供了java调用栈的录制和java 堆的转储。但是他们无法同时使用,导致在时间轴上面的对比无法完成。但是Perfetto提供了类似的功能。

接下来将以Perfetto为工具,首先介绍同时录制java的调用栈和java堆,在逻辑上进行比较,得出泄漏点的调用栈。然后在一定时间间隔上,对java调用栈和java堆进行差分比较,得出泄漏点的调用栈。

Perfetto同时录制堆栈和heap dump

在android 如何分析应用的内存(十三)——perfetto一文中我们介绍了Perfetto的使用方法。接下来我们将使用常规模式,来同时录制java heap和java callstack。

adb shell perfetto \-c - --txt \-o /data/misc/perfetto-traces/trace \
<<EOFbuffers: {size_kb: 63488fill_policy: DISCARD
}
buffers: {size_kb: 2048fill_policy: DISCARD
}
data_sources: {config {name: "android.packages_list"target_buffer: 1}
}
data_sources: {config {name: "android.heapprofd"target_buffer: 0heapprofd_config {sampling_interval_bytes: 4096process_cmdline: "com.example.test_malloc"shmem_size_bytes: 8388608block_client: true## 只录制com.android.art的堆heaps: "com.android.art"}}
}
## 增加了第二个数据源
data_sources: {## 数据源配置config {## 名字必须为"android.java_hprof"name: "android.java_hprof"## 指定目标buffer,关于目标buffer的含义见android 如何分析应用的内存(十三)target_buffer: 0## java_hprof的配置java_hprof_config {## dump的进程名为:"com.example.test_malloc"process_cmdline: "com.example.test_malloc"}}
}
## 时间修改为60s
duration_ms: 60000EOF

在上面的命令中,我们新增了一个data_source,并且将其指定为录制java heap。同时还有另外一个data_source即android.heapprofd。它会录制指定进程的堆内存,因为我们暂时不需要native堆,所以在heaps中设置了“com.android.art”

关于Perfetto配置文件的说明见:android 如何分析应用的内存(十三)——perfetto

分析结果

输入上面的命令,然后操作APP,60s之后,会在/data/misc/perfetto-traces/trace中形成结果文件,将其pull出来,用https://ui.perfetto.dev/打开即可。如下图
在这里插入图片描述

图中:

  • 标记1:到GC root的这条路的retained size大小。
  • 标记2:到GC root的这条路径的Retained set。

注意:某个对象的Retained size可以理解为:回收这个对象之后,会回收Retained size这么多内存。某个对象的Retained set可以理解为:回收这个对象之后,被它引用且能被回收的对象的集合。某个路径上的Retained size,即为这个路径上的对象的Retained size之和。某个路径上的Retained set,即为这个路径上的对象的Retained set之和

Retained size的计算见:<android 如何分析应用的内存(十六)——使用AS查看Android堆>

注意注意:在上面的操作中,我故意放置了一个小小的漏洞。仔细观察图中,两个菱形的位置,一个在开头,一个在结尾。为了进行泄露点的逻辑分析dump heap和callstack,这两个棱形应该越靠近越好,因此,对上面的配置,调整如下:

adb shell perfetto \-c - --txt \-o /data/misc/perfetto-traces/trace \
<<EOFbuffers: {## 将buffer增大1000倍,否则出现Perfetto ui解析出错size_kb: 63488000fill_policy: DISCARD
}
buffers: {size_kb: 2048fill_policy: DISCARD
}
data_sources: {config {name: "android.packages_list"target_buffer: 1}
}
data_sources: {config {name: "android.heapprofd"target_buffer: 0heapprofd_config {sampling_interval_bytes: 4096process_cmdline: "com.example.test_malloc"shmem_size_bytes: 8388608heaps: "com.android.art"continuous_dump_config {## 10s之后,才开始第一次dumpdump_phase_ms: 10000## 每隔2s,dump一次dump_interval_ms: 10000}}}
}data_sources: {config {name: "android.java_hprof"target_buffer: 0java_hprof_config {process_cmdline: "com.example.test_malloc"continuous_dump_config {## 10s后,才开始第一次dumpdump_phase_ms: 10000## 每隔2s,dump一次dump_interval_ms: 10000}}}
}
## 总时间变成 30s
duration_ms: 30000EOF

注意:这里dump heap时,需要先启动APP,再运行Perfetto。

得到的结果如下图:
在这里插入图片描述

调整时间轴,将两个重合的棱形,放大一点如下图:
在这里插入图片描述

图中,点击第二个棱形图标,出现从GC root的火焰图。

晴天霹雳!!!发现Perfetto在我的Pixel 3上面拉取出来的java heap dump并没有正确的计算引用链。导致我的火焰图,没有正确的反应内存泄露。经过深入分析,发现问题出现在Classloader和它加载的对象之间的引用链没有正确处理,导致了一些从GC root可达的对象,变成了不可达,即已经是泄露的对象,变成了没有泄露。

我们的目标是为了同时采集callstack和heap dump进行逻辑分析。因此我们可以忽略这种影响,直接操作数据库即可。

Heap dump的数据库表

java heap dump只会涉及到3张表:

  • heap_graph_reference:存储引用
  • heap_graph_object:存储对象
  • heap_graph_class:存储类

为了能够直观的展示这些表的结构。下面使用工具,将trace文件的数据库导出来,然后使用数据库UI工具进行查看

导出数据库

使用如下的命令进行数据库的导出。

./trace_processor /Users/biaowan/Documents/trace_single_conti -e  ~/Documents/trace_to_sqlite.db

本次实验,使用了DBeaver的社区版,进行数据库的查看。打开导出的数据库:trace_to_sqlite.db.如下图:

在这里插入图片描述

表说明

在真正使用之前,需要对表的各个列做一个说明:

heap_graph_reference

  • id 本引用唯一的id
  • type 本表名字,即heap_graph_reference
  • reference_set_id 引用对象集ID,如果这个引用是在某个对象中,那么在heap_graph_object中的reference_set_id和此值相等
  • owned_id 被引用的对象的id,即heap_graph_object的id
  • owner_id 使用这个引用的对象的id
  • field_name 这个引用的字段名
  • field_type_name 这个引用的字段的类型名
  • deobfuscated_field_name 反混淆之后的字段名

heap_graph_object

  • id 本对象的id
  • type 本表的名字
  • upid pid
  • graph_sample_ts 采样时间,即dump这个对象的时间
  • self_size 自身大小
  • native_size native大小
  • reference_set_id 本对象引用的其他对象的应用集id
  • reachable 从根对象是否可达,如果可达,则不可回收,否则,可回收(有bug)
  • type_id 本对象对应的class的id
  • root_type 如果不为空,则说明是根对象

heap_graph_class

  • id 本class的id
  • type 本表名字
  • name 本class的名字
  • deobfuscated_name 本class反混淆之后的名字
  • location 本class在什么地方
  • classloader_id classloader的id,这个id即为heap_graph_object的id
  • superclass_id 父类id,对应于本表的id
  • kind 类型

有了这些表的使用说明之后,我们就可以根据自己的需要使用SQL查询语句查看堆中的对象。

接下来,我们先简单的查看,在第二个heap dump中,哪些对象占据的内存空间最大。

查看第二个堆中的内存占用情况

注意:为什么要使用第二个堆?因为在我们的采集数据中,是从Perfetto开始运行的第十秒开始采集,然后再过十秒再次采集。而第一次采集的数据,因为callstack和heap时间间隔较大,所以不采用它。

选取正确的时间戳

使用SQL语句如下:

select * from heap_graph_object group by graph_sample_ts;

在这里插入图片描述

从图中,我们可以看到有三个时间段。分别对应于火焰图中的三个菱形。其余的菱形为callstack

我们要分析的就是第二个采样时间即:398831516584184

将对应时间戳的堆中对象,按照类进行分类,并统计其大小,倒序输出

select class.id,sum(object.self_size) as totalSize,class.name from heap_graph_class as class inner join heap_graph_object as objecton class.id=object.type_id where object.graph_sample_ts=398831516584184group by class.idorder by totalSize desc;

结果如下
在这里插入图片描述

图中可以看到最大的对象类型是int[],其次为String。

注意:本次查询,即包括了能被回收的对象,也包括了不能回收的对象。因为Perfetto本身的错误,不能通过reachable字段来判断是否可回收。事实上,可以自己写一个脚本,递归处理classloader的引用关系,然后修改数据库中的reachable字段。不过我们的任务是为了找到泄漏对象和调用栈的关系。泄露对象其实已经明确了。即可以通过前面两篇的文章,来确定泄露的对象。见:

  • android 如何分析应用的内存(十七)——使用MAT查看Android堆:http://t.csdn.cn/c3BfM
  • android 如何分析应用的内存(十六)——使用AS查看Android堆:http://t.csdn.cn/xYGoA

如果仅仅是上面的查询结果,并不能简单的归因于内存泄露对象为int[],好在我们有AS和MAT工具可以辅助归因。随着Perfetto工具的完善(修复reachable字段的值),仅用Perfetto也可以很好的找到内存泄露点。

又因为前两篇文章和本篇文章,都是使用的一个测试APP,所以,我们已经将内存泄漏点归因于int[]了。接下来就是将这个内存泄漏点与调用栈联系起来

将泄露对象与调用栈简单的联系起来

上面小节说明了泄露对象为int[],如果同一时间在调用栈中某个调用点执行的次数最多,或者在该调用点分配的对象最大,即可简单的将其进行逻辑联系起来。认为是该调用点导致的内存泄露。

我们点击离第二个堆最近的,棱形图标,如下图:
在这里插入图片描述

因为int[]占用了大量的空间,所以我们选择调用栈的total allocation size.如下
在这里插入图片描述

从图中,我们可以看到,doText()这个调用点,几乎占据了99%的分配大小。毫无疑问,int[]的泄露是这个doText()调用点导致的。但是这里面有两个doText(),分别占据约60%和约40%,可以肯定这两个调用点,都导致了内存的泄露。

然后查看其火焰图,可以找到整个调用栈和调用线程。

思考:一切看起来很简单,对吗?是否思考过一个问题——他们的时间点真的对的上吗?或者他们的时间点真的合理吗?

事实上:java的heap dump的数据,是从程序开始运行到dump点的堆中数据。而heapprofd中的数据(即这里的java调用栈)为Perfetto开始运行,到录制点之间的数据。画个图如下
在这里插入图片描述

解决办法:可能读者会想到将Perfetto在app启动之前启动,这样他们开始计算的时间点都是从app启动的时候开始了。然而,根据实测,要抓取java heap,必须先app启动,所以此种方法不可取。真正要解决这种问题,我们只需要再次进行一次录制,然后分别对callstack和heap进行差分比较即可。

用差分比较解决解决剩下难以定位的问题

用差分比较,可以排除,上述时间起始点不同步带来的干扰,同时还能排除,线程过多调用栈过杂带来的干扰。接下来看看使用步骤

重新录制更长时间段的内存数据和调用栈

将上面的配置文件的总时长更改为60s。然后重新录制,得如下图所示的情况

在这里插入图片描述

如上图我们采样了大约6组数据,现在我们选择第40s和第50s的两组进行差分比较分析。当然也可以选择其他组进行比较。

差分分析两个堆中查看增加内容最多的数据

  1. 先找出两者之间的时间。如下
select * from heap_graph_object group by graph_sample_ts;

在这里插入图片描述

根据结果我们选择上图的两个时间,分别为:462051768285433和462061780815388

  1. 将两个时间上的堆做减法,留下40s到50s中增加的对象。
    为了对两个表有一个感性的认知,可以执行下面的指令,进行查看
select class.id,object.graph_sample_ts,sum(object.self_size) as totalSize,class.name from heap_graph_class as class inner join heap_graph_object as objecton class.id=object.type_id where object.graph_sample_ts=462051768285433 or object.graph_sample_ts=462061780815388group by class.idorder by totalSize desc;

在这里插入图片描述

从图中可以看到,不同时间段上对象的大小之和。

接下来,将50s和40s之间的堆,进行相减,如下:

select t2.totalSize - COALESCE(t1.totalSize,0) as diff,t2.name
from (select class.id,object.graph_sample_ts,sum(object.self_size) as totalSize,class.name from heap_graph_class as class inner join heap_graph_object as objecton class.id=object.type_id where object.graph_sample_ts=462061780815388group by class.id,object.graph_sample_tsorder by totalSize desc
) as t2 left join (select class.id,object.graph_sample_ts,sum(object.self_size) as totalSize,class.name from heap_graph_class as class inner join heap_graph_object as objecton class.id=object.type_id where object.graph_sample_ts=462051768285433group by class.id,object.graph_sample_tsorder by totalSize desc
) as t1 on t2.name = t1.name
order by diff desc

在这里插入图片描述

为了更好的计算它们所占的百分比,我在这里求总和之后,直接写入插入语句中,如下:

select (t2.totalSize - COALESCE(t1.totalSize,0))/2119766.0 as percentage,t2.totalSize - COALESCE(t1.totalSize,0) as diff,t2.name
from (select class.id,object.graph_sample_ts,sum(object.self_size) as totalSize,class.name from heap_graph_class as class inner join heap_graph_object as objecton class.id=object.type_id where object.graph_sample_ts=462061780815388group by class.id,object.graph_sample_tsorder by totalSize desc
) as t2 left join (select class.id,object.graph_sample_ts,sum(object.self_size) as totalSize,class.name from heap_graph_class as class inner join heap_graph_object as objecton class.id=object.type_id where object.graph_sample_ts=462051768285433group by class.id,object.graph_sample_tsorder by totalSize desc
) as t1 on t2.name = t1.name
order by percentage desc

如下图
在这里插入图片描述

从图中我们看到了97%的对象为int[],接下来只要比较40s到50s之间,什么样的调用点被调用的次数最多,或者该调用点分配的内存最多,那么这个调用点大概率就是产生这97%的int[]的地方

差分分析同时间段的调用栈

在介绍如何查看调用栈的差分之前,我们需要知道跟调用栈相关的数据库中的表,分别有下面三张表:

  • heap_profile_allocation:存储分配
  • stack_profile_frame:存储栈帧名
  • stack_profile_callsite:存储调用点

当然除了上面三个表以外,还有其他的表,但是对于我们的分析关系不大,故不在啰嗦,查看所有表的信息可参阅:https://perfetto.dev/docs/analysis/sql-tables

调用栈表说明

heap_profile_allocation

  • id 唯一id
  • type 本表名
  • ts 采样时间
  • upid pid
  • heap_name 堆名字
  • callsite_id 调用点id,即stack_profile_callsite的di
  • count 分配的次数,正数就是该调用点的分配次数,负数就是该调用点的释放次数
  • size 分配的大小,同样有正负之分,正数表示分配大小,负数表示释放大小

stack_profile_frame

  • id 唯一id
  • type 本表名
  • name 函数名
  • mapping 该函数映射到哪一个库,如so,.dex 即stack_profile_mapping的id
  • rel_pc 相对于映射库的pc值
  • symbol_set_id 该函数名对应的符号表的id,即stack_profile_symbol的id
  • deobfuscated_name 反混淆之后的名字

stack_profile_callsite

  • id 唯一id
  • type 本表名
  • depth 到调用栈顶部的距离,多一个函数,则深度加一
  • parent_id 本调用点的父函数的调用点id。即stack_profile_callsite的id
  • frame_id 帧id,即stack_profile_frame的id

查看各个采样时间

使用如下的命令查看。

select *,sum(count) as totalCount ,sum (size) as totalSize 
from heap_profile_allocation group by ts;

在这里插入图片描述

从图中可以看到,整个数据被分成了6个时间段,刚好对应于火焰图的六菱形。在火焰图中,每个棱形表示的是从开始抓取到棱形位置对应时间的所有分配。

然而数据库中的每个时间点,表示的是从上一个时间点到本次抓取的所有数据,因此查看40s到50s之间的数据,只需要看第50s的数据即可。也就是倒数第二行。

查看40s和50s的调用详细情况

为了便于理解,下面的语句,将40s和50s的两个堆都列出来分析。如下

select * 
from (select * from heap_profile_allocation where ts = 462061299971174 order by count desc
) as t1
union all 
select * 
from (select * from heap_profile_allocation where ts = 462071449972185 order by count desc
) as t2

在这里插入图片描述

上图列出了30-40区间的情况,以及40-50区间的情况,稍微计算下各个调用点分配的内存占比,可以知道:701调用点的内存分配占据了40s到50s所有分配的82% 因此我们可以大胆的下结论——40s到50s之间的内存泄露由701分配点导致。

查看701分配点的调用栈

使用下面的递归语句,查看整个701的调用栈,如下

WITH RECURSIVE RecursiveCTE AS (SELECT id, parent_id,frame_idFROM stack_profile_callsiteWHERE id = 701UNION ALLSELECT origin.id, origin.parent_id,origin.frame_idFROM stack_profile_callsite originJOIN RecursiveCTE r ON r.parent_id = origin.id
)
SELECT result.id,result.parent_id,frame.name 
FROM RecursiveCTE as result inner join stack_profile_frame as frame on frame.id=result.frame_id 
order by result.id desc;

如下图
在这里插入图片描述

直接观察即可看到40s至50s之间泄露对象int[]由上图的调用栈产生泄露。

注意,使用同样的分析方法,查看调用点518,依然会得出相同的结论,不过他们发生在30s至40s之间。同样的操作步骤,不再继续举例

至此,使用perfetto进行内存分析,已经介绍完毕。

内存方法大总结

万事大吉,关于Android的内存分析已经介绍完毕。现在对前面的所有文章进行一个总结:

native篇

  1. 第零个工具xdd:只能查看任意内存
  2. 第一个工具gdb:它可以查看:寄存器,和任意位置的内存,分析coredump,能查看栈情况,不能查看堆情况
  3. 第二个工具lldb:它可以查看:寄存器,和任意位置的内存,分析coredump,能查看栈情况,不能查看堆情况
  4. 第三个工具自定义malloc:只能查看堆情况,且查看的范围较小,几乎只有自己编译的代码
  5. 第四个工具malloc hook:能查看所有的堆分配情况
  6. 第五个工具malloc统计和libmemunreachable:可以查看所有堆分配情况
  7. 第六个工具malloc debug和libc回调:能查看所有堆分配情况
  8. 第七个工具ASan/HWASan:只能查看linux的堆分配情况,无法查找android的分配情况,列在此处只是为了知识的完整性
  9. 第八个工具perfetto:只能查看堆内存分配情况

java篇

  1. 第零个工具jdb:查看堆帧,本地变量,锁,对象
  2. 第一个工具java debugger for vscode:查看堆栈,本地变量,对象
  3. 第二个工具Android studio:查看堆,对象引用,Retained size,调用栈
  4. 第三个工具MAT:查看堆,对象引用,Retained size ,还能进行堆间差分分析
  5. 第四个工具Perfetto:查看堆,对象引用,Retained size,调用栈,还能在堆和调用栈之间进行差分分析

本系列完。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/86638.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[保研/考研机试] KY163 素数判定 哈尔滨工业大学复试上机题 C++实现

题目链接&#xff1a; 素数判定https://www.nowcoder.com/share/jump/437195121691718831561 描述 给定一个数n&#xff0c;要求判断其是否为素数&#xff08;0,1&#xff0c;负数都是非素数&#xff09;。 输入描述&#xff1a; 测试数据有多组&#xff0c;每组输入一个数…

excel将主信息和明细信息整理为多对多(每隔几行空白如何填充)

excel导出的数据是主信息和明细信息形式。 方法如下:1、首先&#xff0c;从第一个单元格开始选中要填充的数据区域。2、按CtrlG或者F5调出定位对话框&#xff0c;点击左下角的【定位条件】。3、在【定位条件】中选择【空值】&#xff0c;然后点击【确定】按钮。4、按照上述操作…

Vue3+Ts+Vite项目全局配置Element-Plus主题色

概述 我找了很多博客&#xff0c;想全局配置Elmenet-Plus组件主题色&#xff0c;但都没有效果。所以有了这篇博客&#xff0c;希望能对你有所帮助&#xff01;&#xff01;&#xff01; 文章目录 概述一、先看效果二、创建全局颜色文件2.1 /src/styles 下新建 element-plus.sc…

Snapclear for mac图像背景删除软件

Snapclear使用先进的算法和人工智能技术&#xff0c;能够快速而准确地分离图像中的主题和背景。它可以自动识别边缘和细节&#xff0c;并生成平滑而清晰的抠图结果。 Snapclear Mac版下载-Snapclear for mac(图像背景删除软件)- Mac下载 功能 人工智能驱动。 精确的切片 100%…

skywalking忽略调用链路中的指定异常

文章目录 一、介绍二、演示项目介绍1. 支付服务2. 订单服务 三、项目演示1. 未忽略异常2. 忽略异常修改配置使用注解 四、结论 往期内容 一、skywalking安装教程 二、skywalking全链路追踪 三、skywalking日志收集 一、介绍 在前面介绍在微服务项目中使用skywalking进行全链…

小白到运维工程师自学之路 第七十一集 (kubernetes网络设置)

一、概述 Master 节点NotReady 的原因就是因为没有使用任何的网络插件&#xff0c;此时Node 和Master的连接还不正常。目前最流行的Kubernetes 网络插件有Flannel、Calico、Canal、Weave 这里选择使用flannel。 二、安装flannel 1、master下载kube-flannel.yml&#xff0c;所…

ABAP: SQL 多值查询

基础查数据 问题举例&#xff1a;例如查物料类型为ZFRT、ZROH和ZRSA的物料编码。 1、直接查询&#xff0c;三种不同类型的物料类型是或的关系。 SELECT DISTINCT ma~matnr ma~mtartFROM mara AS maINNER JOIN mbewh AS mbON ma~matnr mb~matnrINTO CORRESPONDING FIELDS OF…

Lombok的使用及注解含义

文章目录 一、简介二、如何使用2.1、在IDEA中安装Lombok插件2.2、添加maven依赖 三、常用注解3.1、Getter / Setter3.2、ToString3.3、NoArgsConstructor / AllArgsConstructor3.4、EqualsAndHashCode3.5、Data3.6、Value3.7、Accessors3.7.1、Accessors(chain true)3.7.2、Ac…

数据结构--最小生成树

数据结构–最小生成树 连通图 \color{red}连通图 连通图的生成树是 包含图中全部顶点的一个极小连通子图 \color{red}包含图中全部顶点的一个极小连通子图 包含图中全部顶点的一个极小连通子图。 若图中顶点数为n&#xff0c;则它的生成树含有 n-1 条边。对生成树而言&#xff…

Spring Profile与PropertyPlaceholderConfigurer实现项目多环境配置切换

最近考虑项目在不同环境下配置的切换&#xff0c;使用profile注解搭配PropertyPlaceholderConfigurer实现对配置文件的切换&#xff0c;简单写了个demo记录下实现。 基本知识介绍 Profile Profile通过对bean进行修饰&#xff0c;来限定spring在bean管理时的初始化情况&#…

[NOIP2003 普及组] 栈

题目背景 栈是计算机中经典的数据结构&#xff0c;简单的说&#xff0c;栈就是限制在一端进行插入删除操作的线性表。 栈有两种最重要的操作&#xff0c;即 pop&#xff08;从栈顶弹出一个元素&#xff09;和 push&#xff08;将一个元素进栈&#xff09;。 栈的重要性不言自…

三、MySql表的操作

文章目录 一、创建表&#xff08;一&#xff09;语法&#xff1a;&#xff08;二&#xff09;说明&#xff1a; 二、创建表案例&#xff08;一&#xff09;代码&#xff1a;&#xff08;二&#xff09;说明&#xff1a; 三、查看表结构&#xff08;一&#xff09;语法&#xff…

C#随机法 双峰函数 求极值 避免落入局部最优解

避免落入局部最优解&#xff0c;只要让步长够长即可。 x1 resultX1 random1.NextDouble()*100; 如果后面不乘以100&#xff0c;则很大概率落入负数的最大值 Random random1 new Random(DateTime.Now.Millisecond);double x1 0, resultX10,max-999999,maxTemp0;for (int i …

【二分+贪心】CF1622 C

Problem - 1622C - Codeforces 题意&#xff1a; 思路&#xff1a; 首先&#xff0c;观察样例可知&#xff0c;肯定是把原本的最小值减到某个值&#xff0c;然后再复制几次 复制的时候肯定是从大到小复制 那把最小值减到哪个值是不确定的&#xff0c;考虑枚举这个值&#x…

【React学习】—类式组件(六)

【React学习】—类式组件&#xff08;六&#xff09; <script type"text/babel">//创建类式组件class MyComponent extends React.Component{render() {// render是放在哪里的&#xff1f;MyComponent的原型对象上&#xff0c;供实例使用// render中的this是谁…

构建Docker容器监控系统(2)(Cadvisor +Prometheus+Grafana)

Cadvisor产品简介 Cadvisor是Google开源的一款用于展示和分析容器运行状态的可视化工具。通过在主机上运行Cadvisor用户可以轻松的获取到当前主机上容器的运行统计信息&#xff0c;并以图表的形式向用户展示。 接着上一篇来继续 部署Cadvisor 被监控主机上部署Cadvisor容器…

Flink多流处理之Broadcast(广播变量)

写过Spark批处理的应该都知道,有一个广播变量broadcast这样的一个算子,可以优化我们计算的过程,有效的提高效率;同样在Flink中也有broadcast,简单来说和Spark中的类似,但是有所区别,首先Spark中的broadcast是静态的数据,而Flink中的broadcast是动态的,也就是源源不断的数据流.在…

Docker 安装和架构说明

Docker 并非是一个通用的容器工具&#xff0c;它依赖于已存在并运行的Linux内核环境。 Docker实质上是在已经运行的Liunx下制造了一个隔离的文件环境&#xff0c;因此他的执行效率几乎等同于所部署的linux主机。因此Docker必须部署在Linux内核系统上。如果其他系统想部署Docke…

阿里云服务器部署Drupal网站教程基于CentOS系统

阿里云百科分享如何在CentOS 7操作系统的ECS实例上搭建Drupal电子商务网站。Drupal是使用PHP语言编写的开源内容管理框架&#xff08;CMF&#xff09;&#xff0c;它由内容管理系统&#xff08;CMS&#xff09;和PHP开发框架&#xff08;Framework&#xff09;共同构成。它用于…

LeetCode 206.反转链表

文章目录 &#x1f4a1;题目分析&#x1f4a1;解题思路&#x1f6a9;方法1: 反转指针指向&#x1f514;接口源码&#xff1a;&#x1f6a9;方法2:取节点头插&#x1f514;接口源码&#xff1a; 题目链接&#x1f449;LeetCode 206.反转链表&#x1f448; &#x1f4a1;题目分析…