Selenium图片滑块验证码

因为种种原因没能实现愿景的目标,在这里记录一下中间结果,也算是一个收场吧。这篇文章主要是用selenium解决滑块验证码的个别案列。

思路:

用selenium打开浏览器指定网站

将残缺块图片和背景图片下载到本地

对比两张图片的相似地方,计算要滑动的距离

规划路线,移动滑块

一、实现步骤

1、用selenium打开浏览器浏览指定网站

1、找到chromedriver.exe的路径

点击开始找到谷歌图标==》右键更多==》打开文件位置==》右键谷歌快捷方式==》属性 ==》打开文件所在的位置 ==》复制路径

2、代码

from selenium import webdriver# chrome_path要改成你自己的路径chrome_path = r"C:\Users\11248\AppData\Local\Google\Chrome\Application\chromedriver.exe"url = 'https://icas.jnu.edu.cn/cas/login'driver = webdriver.Chrome(chrome_path)driver.get(url)

二、将残缺块图片和背景图片下载到本地

1、找到图片位置

打开网页进入开发者工具,找到图片位置

2、代码

import timeimport requestsfrom PIL import Imagefrom selenium.webdriver.common.by import Byfrom io import BytesIOtime.sleep(5)# 进入页面要停留几秒钟,等页面加载完target_link = driver.find_element(By.CLASS_NAME, "yidun_bg-img").get_attribute('src')template_link = driver.find_element(By.CLASS_NAME, "yidun_jigsaw").get_attribute('src')target_img = Image.open(BytesIO(requests.get(target_link).content))template_img = Image.open(BytesIO(requests.get(template_link).content))target_img.save('target.jpg')template_img.save('template.png')

三、对比两张图片的相似地方,计算要滑动的距离

1、用matchTemplate获取移动距离

因为背景图片中的残缺块位置和原始残缺图的亮度有所差异,直接对比两张图片相似的地方,往往得不到令人满意的结果,在此要对两张图片进行一定的处理,为了避免这种亮度的干扰,笔者这里将两张图片先进行灰度处理,再对图像进行高斯处理,最后进行边缘检测。

def handel_img(img):imgGray = cv2.cvtColor(img, cv2.COLOR_RGBA2GRAY)  # 转灰度图imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1)  # 高斯模糊imgCanny = cv2.Canny(imgBlur, 60, 60)  # Canny算子边缘检测return imgCanny

 将JPG图像转变为4通道(RGBA)

def add_alpha_channel(img):""" 为jpg图像添加alpha通道 """r_channel, g_channel, b_channel = cv2.split(img)  # 剥离jpg图像通道alpha_channel = np.ones(b_channel.shape, dtype=b_channel.dtype) * 255  # 创建Alpha通道img_new = cv2.merge((r_channel, g_channel, b_channel, alpha_channel))  # 融合通道return img_new

2、代码

import cv2# 读取图像def match(img_jpg_path, img_png_path):# 读取图像img_jpg = cv2.imread(img_jpg_path, cv2.IMREAD_UNCHANGED)img_png = cv2.imread(img_png_path, cv2.IMREAD_UNCHANGED)# 判断jpg图像是否已经为4通道if img_jpg.shape[2] == 3:img_jpg = add_alpha_channel(img_jpg)img = handel_img(img_jpg)small_img = handel_img(img_png)res_TM_CCOEFF_NORMED = cv2.matchTemplate(img, small_img, 3)value = cv2.minMaxLoc(res_TM_CCOEFF_NORMED)value = value[3][0]  # 获取到移动距离return value

3、检验效果

为了验证思路和方法是否得当,这里将滑块图片与背景图片进行拼接,为后面埋下一个小坑。

def merge_img(jpg_img, png_img, y1, y2, x1, x2):""" 将png透明图像与jpg图像叠加y1,y2,x1,x2为叠加位置坐标值"""# 判断jpg图像是否已经为4通道if jpg_img.shape[2] == 3:jpg_img = add_alpha_channel(jpg_img)# 获取要覆盖图像的alpha值,将像素值除以255,使值保持在0-1之间alpha_png = png_img[yy1:yy2, xx1:xx2, 3] / 255.0alpha_jpg = 1 - alpha_png# 开始叠加for c in range(0, 3):jpg_img[y1:y2, x1:x2, c] = ((alpha_jpg * jpg_img[y1:y2, x1:x2, c]) + (alpha_png * png_img[yy1:yy2, xx1:xx2, c]))return jpg_imgimg_jpg_path = 'target.jpg'  # 读者可自行修改文件路径img_png_path = 'template.png'  # 读者可自行修改文件路径x1 = match(img_jpg_path, img_png_path)y1 = 0x2 = x1 + img_png.shape[1]y2 = y1 + img_png.shape[0]# 开始叠加res_img = merge_img(img_jpg, img_png, y1, y2, x1, x2)cv2.imshow("res_img ", res_img)cv2.waitKey(0)

四、规划路线,移动滑块

1、点击滑块移动

用第3节已经获取到的距离,点击滑块进行移动

from selenium.webdriver.support import expected_conditions as ECfrom selenium.webdriver.support.wait import WebDriverWaitfrom selenium.webdriver import ActionChainsdef crack_slider(distance):wait = WebDriverWait(driver, 20)slider = wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'yidun_slider')))ActionChains(self.driver).click_and_hold(slider).perform()ActionChains(self.driver).move_by_offset(xoffset=distance, yoffset=0).perform()time.sleep(2)ActionChains(self.driver).release().perform()return 0

神奇的事情是,坑来了,没有匹配成功。

2、匹配失败原因

这里有以下两点原因:

  • 图片尺寸发生了变化,距离要进行转换。

  • 滑块滑动时,滑块和残缺块的相对位置有变动。

首先解决图片尺寸变化问题,找到网页中图片大小:345x172.500

下载到本地图片大小:480x240

所以要对距离进行以下处理:

distance = distance / 480 * 345

关于第二个问题,这里没有找到很好的测量工具测量出来,好在验证码对位置精确度要求不高,就一个个试数吧。

distance = distance /480 * 345 + 12

五、补充

在对极验验证码进行学习中,有的网站对移动轨迹进行了验证,如果滑动太快,也会被识别出机器操作,为了模拟人工操作,出色的程序员写出了一个魔幻移动轨迹

举个例子:我们可以先超过目标,再往回移动。

def get_tracks(distance):distance += 20v = 0t = 0.2forward_tracks = []current = 0mid = distance * 3 / 5while current < distance:if current < mid:a = 2else:a = -3s = v * t + 0.5 * a * (t ** 2)v = v + a * tcurrent += sforward_tracks.append(round(s))back_tracks = [-3, -3, -2, -2, -2, -2, -2, -1, -1, -1]return {'forward_tracks': forward_tracks, 'back_tracks': back_tracks}def crack_slider(tracks):wait = WebDriverWait(driver, 20)slider = wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'yidun_slider')))ActionChains(driver).click_and_hold(slider).perform() # 模拟按住鼠标左键for track in tracks['forward_tracks']:ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()time.sleep(0.5)for back_tracks in tracks['back_tracks']:ActionChains(driver).move_by_offset(xoffset=back_tracks, yoffset=0).perform()ActionChains(driver).move_by_offset(xoffset=-4, yoffset=0).perform()ActionChains(driver).move_by_offset(xoffset=4, yoffset=0).perform()time.sleep(0.5)ActionChains(driver).release().perform()# 释放左键return 0

六、完整代码

# coding=utf-8import reimport requestsimport timefrom io import BytesIOimport cv2import numpy as npfrom PIL import Imagefrom selenium import webdriverfrom selenium.webdriver import ActionChainsfrom selenium.webdriver.common.by import Byfrom selenium.webdriver.support import expected_conditions as ECfrom selenium.webdriver.support.wait import WebDriverWaitclass CrackSlider():# 通过浏览器截图,识别验证码中缺口位置,获取需要滑动距离,并破解滑动验证码def __init__(self):super(CrackSlider, self).__init__()self.opts = webdriver.ChromeOptions()self.opts.add_experimental_option('excludeSwitches', ['enable-logging'])# self.driver = webdriver.Chrome(ChromeDriverManager().install(), options=self.opts)chrome_path = r"C:\Users\11248\AppData\Local\Google\Chrome\Application\chromedriver.exe"self.driver = webdriver.Chrome(chrome_path, options=self.opts)self.url = 'https://icas.jnu.edu.cn/cas/login'self.wait = WebDriverWait(self.driver, 10)def get_pic(self):self.driver.get(self.url)time.sleep(5)target_link = self.driver.find_element(By.CLASS_NAME, "yidun_bg-img").get_attribute('src')template_link = self.driver.find_element(By.CLASS_NAME, "yidun_jigsaw").get_attribute('src')target_img = Image.open(BytesIO(requests.get(target_link).content))template_img = Image.open(BytesIO(requests.get(template_link).content))target_img.save('target.jpg')template_img.save('template.png')def crack_slider(self, distance):slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'yidun_slider')))ActionChains(self.driver).click_and_hold(slider).perform()ActionChains(self.driver).move_by_offset(xoffset=distance, yoffset=0).perform()time.sleep(2)ActionChains(self.driver).release().perform()return 0def add_alpha_channel(img):""" 为jpg图像添加alpha通道 """r_channel, g_channel, b_channel = cv2.split(img)  # 剥离jpg图像通道alpha_channel = np.ones(b_channel.shape, dtype=b_channel.dtype) * 255  # 创建Alpha通道img_new = cv2.merge((r_channel, g_channel, b_channel, alpha_channel))  # 融合通道return img_newdef handel_img(img):imgGray = cv2.cvtColor(img, cv2.COLOR_RGBA2GRAY)  # 转灰度图imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1)  # 高斯模糊imgCanny = cv2.Canny(imgBlur, 60, 60)  # Canny算子边缘检测return imgCannydef match(img_jpg_path, img_png_path):# 读取图像img_jpg = cv2.imread(img_jpg_path, cv2.IMREAD_UNCHANGED)img_png = cv2.imread(img_png_path, cv2.IMREAD_UNCHANGED)# 判断jpg图像是否已经为4通道if img_jpg.shape[2] == 3:img_jpg = add_alpha_channel(img_jpg)img = handel_img(img_jpg)small_img = handel_img(img_png)res_TM_CCOEFF_NORMED = cv2.matchTemplate(img, small_img, 3)value = cv2.minMaxLoc(res_TM_CCOEFF_NORMED)value = value[3][0]  # 获取到移动距离return value# 1. 打开chromedriver,试试下载图片cs = CrackSlider()cs.get_pic()# 2. 对比图片,计算距离img_jpg_path = 'target.jpg'  # 读者可自行修改文件路径img_png_path = 'template.png'  # 读者可自行修改文件路径distance = match(img_jpg_path, img_png_path)distance = distance /480 * 345 + 12# 3. 移动cs.crack_slider(distance)

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:【文末领取】


     【下面是我整理的2023年最全的软件测试工程师学习知识架构体系图+全套资料】


一、Python编程入门到精通


二、接口自动化项目实战  

三、Web自动化项目实战


四、App自动化项目实战 

五、一线大厂简历


六、测试开发DevOps体系 

七、常用自动化测试工具


八、JMeter性能测试 

九、总结(文末尾部小惊喜)

生命不息,奋斗不止。每一份努力都不会被辜负,只要坚持不懈,终究会有回报。珍惜时间,追求梦想。不忘初心,砥砺前行。你的未来,由你掌握!

生命短暂,时间宝贵,我们无法预知未来会发生什么,但我们可以掌握当下。珍惜每一天,努力奋斗,让自己变得更加强大和优秀。坚定信念,执着追求,成功终将属于你!

只有不断地挑战自己,才能不断地超越自己。坚持追求梦想,勇敢前行,你就会发现奋斗的过程是如此美好而值得。相信自己,你一定可以做到!   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/86799.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【果树农药喷洒机器人】Part6:基于深度相机与分割掩膜的果树冠层体积探测方法

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

JVM垃圾回收

如何确定垃圾 对堆垃圾回收前的第一步就是要判断哪些对象已经死亡&#xff08;即不能再被任何途径使用的对象&#xff09; 引用计数法 这个方法就是为对象添加计数器来标识引用个数&#xff0c;计数器为 0 的对象就是不可能再被使用的。但是这种方法存在循环引用问题&#x…

IntelliJ IDEA快捷键大全

文章目录 1、构建/编译2、文本编辑3、光标操作4、文本选择5、代码折叠6、辅助编码7、上下文导航8、查找操作9、符号导航10、代码分析11、运行和调试12、代码重构13、全局 CVS 操作14、差异查看器15、工具窗口 本文参考了 IntelliJ IDEA 的官网&#xff0c;列举了IntelliJ IDEA&…

提速Rust编译器!

Nethercote是一位研究Rust编译器的软件工程师。最近&#xff0c;他正在探索如何提升Rust编译器的性能&#xff0c;在他的博客文章中介绍了Rust编译器是如何将代码分割成代码生成单元&#xff08;CGU&#xff09;的以及rustc的性能加速。 他解释了不同数量和大小的CGU之间的权衡…

git命令使用

君子拙于不知己,而信于知己。——司马迁 清屏&#xff1a;clear 查看当前面板的路径&#xff1a;pwd 查看当前面板的文件&#xff1a;ls 创建文件夹&#xff1a;mkdir 文件夹名 创建文件&#xff1a;touch 文件名 删除文件夹&#xff1a;rm -rf 文件夹名 删除文件&#xff1a;r…

ChatGPT: 人机交互的未来

ChatGPT: 人机交互的未来 ChatGPT背景ChatGPT的特点ChatGPT的应用场景结论 ChatGPT ChatGPT是一种基于大数据和机器学习的人工智能聊天机器人模型。它由国内团队发明、开发&#xff0c;并被命名为Mental AI。ChatGPT的目标是通过模拟自然对话的方式&#xff0c;提供高效、智能…

基于Spring Boot的影视点播网站设计与实现(Java+spring boot+MySQL)

获取源码或者论文请私信博主 演示视频&#xff1a; 基于Spring Boot的影视点播网站设计与实现&#xff08;Javaspring bootMySQL&#xff09; 使用技术&#xff1a; 前端&#xff1a;html css javascript jQuery ajax thymeleaf 微信小程序 后端&#xff1a;Java springboot…

使用vite创建Vue/React前端项目,配置@别名和Sass样式,又快又方便

Vite官方网站&#xff1a;Vite | 下一代的前端工具链 Vite 并不是基于 Webpack 的&#xff0c;它有自己的开发服务器&#xff0c;利用浏览器中的原生 ES 模块。这种架构使得 Vite 比 Webpack 的开发服务器快了好几个数量级。Vite 采用 Rollup 进行构建&#xff0c;速度也更快…

react-virtualized可视化区域渲染的使用

介绍 github地址&#xff1a;https://github.com/bvaughn/react-virtualized 实例网址&#xff1a;react-virtualized如果体积太大&#xff0c;可以参考用react-window。 使用 安装&#xff1a; yarn add react-virtualized。在项目入口文件index.js中导入样式文件&#xff…

10. Docker Swarm(一)

目录 1、前言 2、Docker Swarm体系架构 2.1、简单介绍 2.2、体系架构 3、简单使用 3.1、环境准备 3.2、初始化master节点 3.3、建立worker节点 3.4、查看集群的节点信息 3.5、部署应用 3.5.1、创建Dockerfile文件 3.5.2、构建镜像 3.5.3、将镜像上传到Docker仓库 …

宋浩概率论笔记(四)数字特征

本帖更新数字特征&#xff0c;包含期望、方差、相关系数等&#xff0c;要点在于记忆性质中的各种公式&#xff0c;遇到题目时能迅速利用已知条件计算答案。

ArcGIS Pro字段操作代码汇总

属性表是GIS数据的重要组成部分&#xff0c;有了属性表才可以进行分析和分类配色等操作&#xff0c;这里为大家介绍一下ArcGIS Pro中字段操作的相关代码&#xff0c;希望能对你有所帮助。 关键词搜索 打开属性表&#xff0c;点击按属性选择&#xff0c;如下图所示。 点击按属…

【loadbalancer】还在用Ribbon?试试Spring自带的LoadBalancer吧

Spring Cloud LoadBalancer是Spring Cloud官方自己提供的客户端负载均衡器, 用来替代Ribbon。 Spring官方提供了两种客户端都可以使用loadbalancer&#xff1a; RestTemplate&#xff1a;Spring提供的用于访问Rest服务的客户端&#xff0c;RestTemplate提供了多种便捷访问远程…

Linux使用gdb调试多文件的C程序

【例】通过vi创建两个.c文件main.c和add.c&#xff1a; 一步编译main.c和add.c文件&#xff0c;并加入调试信息&#xff1a; 1. 在被调函数中加断点时&#xff0c;在执行主函数时&#xff0c;会自动进入被调函数 &#xff08;1&#xff09;进入gdb&#xff0c;跟踪main程序&am…

Matlab绘制圆形(rectangle函数、viscircles函数和圆的参数方程)

基于matlab绘制圆形 一、rectangle函数 对于绘制圆心坐标为&#xff08;x&#xff0c;y&#xff09;半径为r的圆形&#xff0c;函数为&#xff1a; x0; y0; r1; rectangle(Position, [x-r,y-r,2*r,2*r], Curvature, [1 1],EdgeColor, r); axis equalEdgeColor表示颜色 二、…

【Ubuntu】安装docker,docker compose 以及部署一个docker应用

大家好&#xff01;在过去&#xff0c;已经分享了很多有关通过Docker部署应用的内容。今天&#xff0c;我将为大家详细介绍如何在Ubuntu系统上部署最新的Docker平台。 Docker是什么 Docker是一个开源的容器化平台&#xff0c;它允许您将应用程序及其所有依赖项打包到称为容器…

以http_proxy和ajp_proxy方式整合apache和tomcat(动静分离)

注意&#xff1a;http_proxy和ajp_proxy的稳定性不如mod_jk 一.http_proxy方式 1.下载mod_proxy_html.x86_64 2.在apache下创建http_proxy.conf文件&#xff08;或者直接写到conf/httpd.conf文件最后&#xff09; 3.查看server.xml文件 到tomcat的安装目录下的conf/serve…

ThinkPHP成考学员管理平台

有需要请加文章底部Q哦 可远程调试 ThinkPHP成考学员管理平台 一 介绍 成考学员管理平台基于FastAdmin框架开发&#xff0c;数据库mysql&#xff0c;是一款针对学员&#xff0c;教师&#xff0c;专业&#xff0c;课程&#xff0c;成绩&#xff0c;学费等信息管理的系统&#…

大数据Flink(五十八):Flink on Yarn的三种部署方式介绍

文章目录 Flink on Yarn的三种部署方式介绍 一、​​​​​​​Session模式

分享Python技术下AutojsPro7云控代码

引言 有图有真相&#xff0c;那短视频就更是真相了。下面是三大语言的短视频。 Java源码版云控示例&#xff1a; Java源码版云控示例在线视频 Net源码版云控示例&#xff1a; Net源码版云控示例在线视频亚丁号-知识付费平台 支付后可见 扫码付费可见 Python源码版云控示例…