机器人CPP编程基础-04输入Input

机器人CPP编程基础-03变量类型Variables Types


 ……AI……


 


 

C++

#include<iostream> // 引入iostream库,这个库包含了对输入/输出进行操作所需的函数和对象  using namespace std; // 使用命名空间std,这样我们就可以直接使用std中的名字,而不用在每次使用时都写std::  main() // 定义程序的主函数  
{  // cin - console input 这是从控制台输入数据,cin代表“console input”  int a; // 定义一个整数变量a  cin >> a; // 从控制台获取输入,并将输入的值存储在变量a中  cout << "Variable name a = " << a << endl; // 输出变量a的值和它的名字  string name,surname; // 定义两个字符串变量name和surname  cout << "Enter your name : "; // 输出提示信息,让用户输入他们的名字  cin >> name; // 从控制台获取输入,并将输入的值存储在变量name中  cout << "Enter your surname : "; // 输出提示信息,让用户输入他们的姓氏  cin >> surname; // 从控制台获取输入,并将输入的值存储在变量surname中  cout << "Welcome "<<name<<" "<<surname<<endl; // 输出欢迎信息,包含用户的名字和姓氏  
}

 

C++中,输入是通过标准输入流(stdin)进行的,通常使用cin对象来实现。cin对象是istream类的实例,它提供了许多输入方法来读取不同类型的数据。

以下是一些常用的C++输入方法:

  1. 读取字符:

 

cpp复制代码

char ch;
cin >> ch;

这将从标准输入流中读取一个字符,并将其存储在变量ch中。

  1. 读取字符串:

 

cpp复制代码

string str;
cin >> str;

这将从标准输入流中读取一行字符串,并将其存储在变量str中。

  1. 读取整数:

 

cpp复制代码

int num;
cin >> num;

这将从标准输入流中读取一个整数,并将其存储在变量num中。

  1. 读取浮点数:

 

cpp复制代码

double num;
cin >> num;

这将从标准输入流中读取一个浮点数,并将其存储在变量num中。

  1. 读取多个相同类型的数据:

 

cpp复制代码

int a, b, c;
cin >> a >> b >> c;

这将从标准输入流中连续读取三个整数,并将它们分别存储在变量a、b和c中。

  1. 读取一行数据:

 

cpp复制代码

string line;
getline(cin, line);

这将从标准输入流中读取一行字符串,并将其存储在变量line中。注意,getline()函数会读取包括行末尾的换行符在内的整个行。

  1. 忽略一行数据:

 

cpp复制代码

cin.ignore();

这将忽略从标准输入流中读取的一行数据,包括其中的字符、数字和其他内容。

总之,C++的输入操作可以通过使用cin对象和其提供的方法来实现,适用于不同的数据类型和场景。


Arduino

#include <Arduino.h>  void setup() {  Serial.begin(9600); // 初始化串口通信,波特率为9600  
}  void loop() {  int a;  Serial.println("Enter a number:"); // 提示用户输入一个数字  if (Serial.available() > 0) {  a = Serial.parseInt(); // 从串口读取输入的数字  Serial.print("Variable name a = ");  Serial.print(a);  Serial.println();  }  String name = "John"; // 假设默认名字为John  Serial.println("Enter your name (or just press Enter to use default name John):");  if (Serial.available() > 0) {  name = Serial.readString(); // 从串口读取输入的名字  }  Serial.print("Welcome ");  Serial.print(name);  Serial.println();  String surname = "Doe"; // 假设默认姓氏为Doe  Serial.println("Enter your surname (or just press Enter to use default surname Doe):");  if (Serial.available() > 0) {  surname = Serial.readString(); // 从串口读取输入的姓氏  }  Serial.print(name);  Serial.print(" ");  Serial.print(surname);  Serial.println();  delay(1000); // 等待1秒钟后重复循环  
}

在Arduino IDE中,需要使用#include <Arduino.h>来引入Arduino库,而不是#include<iostream>。此外,Arduino IDE使用串口通信来与计算机进行交互,因此需要使用Serial.println()Serial.readString()等函数来读取和输出数据。最后,代码中使用了delay()函数来等待1秒钟,以便让用户有时间输入数据。

Arduino的C++输入主要通过其特有的Serial类实现。Arduino通过串口(Serial port)与计算机或其他设备进行通信。

以下是在Arduino中实现输入的一些基本方法:

  1. 使用Serial.read():这个函数从串口读取字节,并返回它们。如果没有可读的字节,该函数将返回-1。

 

c复制代码

int incomingByte = Serial.read(); // 读取一个字节,并将其存储在变量incomingByte中
  1. 使用Serial.available():这个函数检查是否有可从串口读取的字节。如果有,它将返回可读取的字节数。

 

arduino复制代码

if (Serial.available() > 0) {
// 读取输入
}
  1. 使用Serial.parseInt()或Serial.readString():这两个函数都是为了从串口读取数据并解析为整数或字符串。

 

arduino复制代码

int incomingInt = Serial.parseInt(); // 从串口读取并解析为整数
String incomingString = Serial.readString(); // 从串口读取并解析为字符串

需要注意的是,Arduino的输入方法主要参考了Arduino的Print类和Stream类,但具体的实现方式可能会有所不同。在编写Arduino程序时,最好查阅相关文档,以确保正确使用相关函数和类。

 


ROS1

#include <ros/ros.h>  
#include <std_msgs/String.h>  int main(int argc, char **argv)  
{  // Initialize ROS node  ros::init(argc, argv, "my_node");  // Create a ROS node handle  ros::NodeHandle nh;  // Create a private node handle (optional)  ros::NodeHandle private_nh("~");  // Create a ROS timer (optional, for publishing at a specific rate)  ros::Timer timer = nh.createTimer(ros::Duration(1.0), boost::bind(&myCallbackFunction));  // Create a ROS Publisher (for publishing messages)  ros::Publisher pub = nh.advertise<std_msgs::String>("my_topic", 1000);  // Create a ROS Service Client (for calling services)  ros::ServiceClient client = nh.serviceClient<my_service>("my_service_name");  // Create a ROS Service Server (for handling service calls)  ros::ServiceServer server = nh.advertiseService("my_service_name", &myServiceCallback);  // Create a ROS message for publishing or subscribing to topics  std_msgs::String msg;  msg.data = "Hello, world!";  // Create a ROS console stream for printing messages to the console  ros::console::notifyInit();  std::string line;  while (getline(std::cin, line)) {  if (line == "exit") break;  roscpp::MessageOnConsole(line);  }  ros::console::shutdown();  return 0;  
}

在ROS1(Robot Operating System 1)中,输入通常通过订阅特定主题的方式实现。ROS1中的主题是发布/订阅模型,允许节点(Nodes)之间进行通信。节点可以发布特定主题,而其他节点可以订阅这些主题以接收消息。

以下是在ROS1中实现C++输入的基本步骤:

  1. 创建ROS1 C++节点:首先,需要创建一个ROS1 C++节点,该节点将订阅特定主题并处理接收到的消息。

  2. 包含必要的头文件:在C++源文件中,需要包含ROS1相关的头文件,以便使用ROS1的功能和数据类型。

 

cpp复制代码

#include <ros/ros.h>
#include <std_msgs/String.h>
  1. 创建回调函数:定义一个回调函数,该函数将在接收到特定主题的消息时被调用。在回调函数中,可以处理接收到的消息并进行必要的操作。

 

cpp复制代码

void messageCallback(const std_msgs::String::ConstPtr& msg)
{
// 处理接收到的消息
std::string receivedMessage = msg->data;
// 执行其他操作...
}
  1. 初始化ROS1节点:在main()函数中,需要初始化ROS1节点并设置回调函数。

 

cpp复制代码

int main(int argc, char** argv)
{
// 初始化ROS1节点
ros::init(argc, argv, "my_node");
// 创建节点句柄
ros::NodeHandle nh;
// 订阅特定主题的消息,并设置回调函数
ros::Subscriber sub = nh.subscribe("my_topic", 1000, messageCallback);
// 进入循环,等待消息
ros::spin();
return 0;
}
  1. 编译和运行:将C++源文件编译为可执行文件,并将其与ROS1环境一起运行。确保正确设置ROS1环境变量和依赖项。

这是一个简单的示例,展示了如何在ROS1中使用C++实现输入。根据实际需求,您可能还需要处理不同类型的消息、设置发布者(Publisher)等。详细的ROS1开发指南和文档可参考官方网站。


AI无穷生成,也是十分恐怖的。如何才好用呢?

C++20引入了一些新的输入和输出(I/O)功能,包括文件流、字符串流、格式化输入和输出等。下面详细介绍这些功能。

  1. 文件流

C++20引入了std::ifstreamstd::ofstream,分别用于读取和写入文件。std::ifstream用于从文件中读取数据,而std::ofstream用于将数据写入文件。

以下是一个简单的示例,演示如何使用文件流读取和写入数据:

 

c复制代码

#include <iostream>
#include <fstream>
#include <string>
int main() {
// 创建一个输入文件流对象
std::ifstream inputFile("input.txt");
// 从输入文件流中读取数据
std::string line;
while (std::getline(inputFile, line)) {
std::cout << line << std::endl;
}
// 创建一个输出文件流对象
std::ofstream outputFile("output.txt");
// 将数据写入输出文件流
outputFile << "Hello, World!" << std::endl;
return 0;
}

在上面的示例中,我们使用std::ifstream从名为“input.txt”的文件中读取数据,并使用std::getline逐行读取数据。然后,我们使用std::ofstream将数据写入名为“output.txt”的文件中。

  1. 字符串流

C++20还引入了std::istringstreamstd::ostringstream,分别用于从字符串中读取和将数据写入字符串。这些类可以方便地将字符串转换为其他数据类型,并可以轻松地将数据存储在字符串中。

以下是一个简单的示例,演示如何使用字符串流读取和写入数据:

 

c复制代码

#include <iostream>
#include <sstream>
#include <string>
int main() {
// 创建一个输入字符串流对象
std::istringstream inputString("123 456 789");
// 从输入字符串流中读取数据
int a, b, c;
inputString >> a >> b >> c;
std::cout << "a = " << a << ", b = " << b << ", c = " << c << std::endl;
// 创建一个输出字符串流对象
std::ostringstream outputString;
// 将数据写入输出字符串流
outputString << "Hello, World!" << std::endl;
std::cout << outputString.str() << std::endl;
return 0;
}

在上面的示例中,我们使用std::istringstream从字符串“123 456 789”中读取三个整数。然后,我们使用std::ostringstream将字符串“Hello, World!”写入字符串流中,并使用str()方法将其转换为字符串。

  1. 格式化输入和输出

C++20引入了新的格式化输入和输出功能,可以更方便地控制数据的格式。这些功能包括控制输出格式、控制浮点数精度、设置宽度和填充字符等。

以下是一个简单的示例,演示如何使用格式化输出控制数据的格式:

 

c复制代码

#include <iostream>
#include <iomanip>
int main() {
int x = 123;
double y = 3.14159;
// 使用格式化输出控制数据的格式
std::cout << std::setw(10) << std::setprecision(4) << std::fixed << x << " " << y << std::endl;
return 0;
}

在上面的示例中,我们使用std::setw设置输出的宽度为10个字符,使用std::setprecision设置浮点数的精度为4位小数,并使用std::fixed指定浮点数以固定点表示。输出结果如下:

 

复制代码

123 3.1416

除了格式化输出,C++20还提供了格式化输入功能。以下是一个简单的示例,演示如何使用格式化输入读取整数和浮点数:

 

c复制代码

#include <iostream>
#include <iomanip>
#include <string>
#include <sstream>
int main() {
std::string input = "123 3.14159";
std::istringstream inputStream(input);
int x;
double y;
// 使用格式化输入读取整数和浮点数
inputStream >> std::setw(10) >> x >> y;
std::cout << "x = " << x << ", y = " << y << std::endl;
return 0;
}

在上面的示例中,我们使用std::istringstream将字符串“123 3.14159”转换为一个字符串流。然后,我们使用std::setw设置输入的宽度,并使用>>运算符从字符串流中读取整数和浮点数。输出结果如下:

 

c复制代码

x = 123, y = 3.1416
  1. 结构化绑定

C++20还引入了结构化绑定功能,可以方便地同时访问结构体或联合体的多个成员。

以下是一个简单的示例,演示如何使用结构化绑定:

 

c复制代码

#include <iostream>
struct Person {
std::string name;
int age;
};
int main() {
Person p = {"Alice", 25};
// 使用结构化绑定同时访问Person的成员
std::cout << p.name << " is " << p.age << " years old." << std::endl;
return 0;
}

输出结果为:

 

复制代码

Alice is 25 years old.

除了结构体,结构化绑定也可以用于联合体和数组。以下是一个示例,演示如何使用结构化绑定访问联合体和数组的成员:

 

c复制代码

#include <iostream>
#include <array>
union Uint8 {
unsigned char value;
struct {
unsigned char least_significant_byte : 8;
};
};
int main() {
Uint8 u = {0x12};
// 使用结构化绑定访问联合体的成员
std::cout << u.least_significant_byte << std::endl;
std::array<int, 3> a = {1, 2, 3};
// 使用结构化绑定访问数组的成员
std::cout << a[0] << " " << a[1] << " " << a[2] << std::endl;
return 0;
}

输出结果为:

 

makefile复制代码

12
1 2 3

通过使用结构化绑定,可以方便地同时访问结构体、联合体和数组的多个成员,提高了代码的可读性和编写效率。

  1. 范围for循环

C++20引入了范围for循环(Range-based for loop),可以方便地遍历容器(如数组、向量、列表等)和迭代器范围。

以下是一个简单的示例,演示如何使用范围for循环遍历数组:

 

c复制代码

#include <iostream>
#include <array>
int main() {
std::array<int, 5> a = {1, 2, 3, 4, 5};
// 使用范围for循环遍历数组
for (const auto &elem : a) {
std::cout << elem << " ";
}
std::cout << std::endl;
return 0;
}

输出结果为:

 

复制代码

1 2 3 4 5

除了数组,范围for循环也可以用于其他容器,如向量、列表等。以下是一个示例,演示如何使用范围for循环遍历向量:

 

c复制代码

#include <iostream>
#include <vector>
int main() {
std::vector<int> v = {1, 2, 3, 4, 5};
// 使用范围for循环遍历向量
for (const auto &elem : v) {
std::cout << elem << " ";
}
std::cout << std::endl;
return 0;
}

输出结果为:

 

复制代码

1 2 3 4 5

通过使用范围for循环,可以方便地遍历容器和迭代器范围,而无需手动使用索引。这使得代码更加简洁和易于阅读。

  1. 初始化列表

C++20引入了初始化列表(Initializer List)语法,可以方便地对容器和其他变量进行初始化。

以下是一个示例,演示如何使用初始化列表对向量进行初始化:

 

c复制代码

#include <iostream>
#include <vector>
int main() {
// 使用初始化列表对向量进行初始化
std::vector<int> v = {1, 2, 3, 4, 5};
// 使用范围for循环遍历向量并输出
for (const auto &elem : v) {
std::cout << elem << " ";
}
std::cout << std::endl;
return 0;
}

输出结果为:

 

复制代码

1 2 3 4 5

除了向量,初始化列表还可以用于初始化其他类型,如结构体、联合体等。以下是一个示例,演示如何使用初始化列表对结构体进行初始化:

 

c复制代码

#include <iostream>
struct Point {
int x;
int y;
};
int main() {
// 使用初始化列表对Point结构体进行初始化
Point p = {10, 20};
// 输出结构体的成员值
std::cout << "x: " << p.x << ", y: " << p.y << std::endl;
return 0;
}

输出结果为:

 

makefile复制代码

x: 10, y: 20

通过使用初始化列表,可以方便地对变量和容器进行初始化,使得代码更加简洁和易于阅读。

  1. 位运算

C++20引入了位运算的功能,可以使用“&”(按位与)、“|”(按位或)、“^”(按位异或)、“~”(按位非)、“>>”和“<<”(右移和左移)操作符进行位运算。

以下是一个示例,演示如何使用位运算对整数进行按位与、按位或和按位异或操作:

 

c复制代码

#include <iostream>
int main() {
int a = 5; // 二进制表示为 0101
int b = 3; // 二进制表示为 0011
// 按位与操作
int and_result = a & b; // 0101 & 0011 = 0001,结果为1
std::cout << "按位与的结果是:" << and_result << std::endl;
// 按位或操作
int or_result = a | b; // 0101 | 0011 = 0111,结果为7
std::cout << "按位或的结果是:" << or_result << std::endl;
// 按位异或操作
int xor_result = a ^ b; // 0101 ^ 0011 = 0110,结果为6
std::cout << "按位异或的结果是:" << xor_result << std::endl;
return 0;
}

输出结果为:

 

makefile复制代码

按位与的结果是:1
按位或的结果是:7
按位异或的结果是:6

除了以上操作,C++20还支持位非、左移和右移运算。这些运算可以用于低级编程和高效的数据处理。

  1. 结构化绑定

C++20引入了结构化绑定功能,可以方便地同时访问结构体或联合体的多个成员。

以下是一个示例,演示如何使用结构化绑定:

 

c复制代码

#include <iostream>
struct Person {
std::string name;
int age;
};
int main() {
Person p = {"Alice", 25};
// 使用结构化绑定同时访问Person的成员
std::cout << p.name << " is " << p.age << " years old." << std::endl;
return 0;
}

输出结果为:

 

复制代码

Alice is 25 years old.

通过使用结构化绑定,可以方便地同时访问结构体或联合体的多个成员,而无需逐个单独访问它们。这使得代码更加简洁和易于阅读。

这些是C++20引入的一些重要功能。还有其他一些功能和改进,但这些是其中一些最重要的。

  1. 线程

C++20引入了线程库,可以方便地编写多线程程序。这个库包含了许多关于线程、任务和并发操作的新功能。

以下是一个简单的示例,演示如何使用线程库:

 

c复制代码

#include <iostream>
#include <thread>
void my_function(int x) {
std::cout << "Thread function called with argument: " << x << std::endl;
}
int main() {
// 创建一个新的线程,并让它执行my_function函数
std::thread my_thread(my_function, 10);
// 在主线程中输出一条消息
std::cout << "Main thread message" << std::endl;
// 等待my_thread线程执行结束
my_thread.join();
return 0;
}

这个程序会创建一个新的线程,并让它执行my_function函数。然后,主线程会输出一条消息,并等待新线程执行结束。

线程库还包括更多的功能,如任务并行化、线程同步、条件变量、原子操作等。这些功能可以让你更方便地编写并行和多线程程序。

  1. 三元运算符

C++20引入了三元运算符?:,可以更方便地进行条件判断。这个运算符的语法如下:

 

c复制代码

condition ? expression1 : expression2

如果condition为真,则表达式的值为expression1;否则,表达式的值为expression2

以下是一个示例,演示如何使用三元运算符:

 

c复制代码

#include <iostream>
int main() {
int a = 10;
int b = 20;
// 使用三元运算符根据条件选择值
int max_value = (a > b) ? a : b;
std::cout << "Max value: " << max_value << std::endl;
return 0;
}

这个程序会输出Max value: 20,因为当a > b为假时,max_value的值被赋为b

  1. 类型推导

C++20引入了类型推导的新功能,使得变量的类型可以自动推导得出。这个功能主要适用于范围for循环和三元运算符。

以下是一个示例,演示如何使用类型推导:

 

c复制代码

#include <iostream>
#include <vector>
int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};
// 使用范围for循环和类型推导遍历numbers向量
for (auto [first, second] : numbers) {
std::cout << first << " " << second << std::endl;
}
return 0;
}

这个程序会输出:

 

makefile复制代码

1 2
3 4
5

在这个示例中,auto [first, second]表示我们要创建一个新的变量firstsecond,它们的类型将由编译器根据numbers向量的元素推导得出。

类型推导使得代码更加简洁,同时也提高了可读性。

  1. 模式匹配(Pattern Matching)

C++20引入了模式匹配的功能,可以使用match关键字进行模式匹配的判断。这个功能主要适用于结构化绑定和类型推导。

以下是一个示例,演示如何使用模式匹配:

 

c复制代码

#include <iostream>
#include <variant>
enum class Color { Red, Green, Blue };
struct RGB {
Color color;
int red;
int green;
int blue;
};
int main() {
std::variant<RGB, std::string> value = RGB{Color::Red, 255, 0, 0};
// 使用模式匹配和结构化绑定判断value的类型并访问其成员
if (const auto &rgb = std::get_if<RGB>(&value)) {
switch (rgb->color) {
case Color::Red:
std::cout << "RGB color: Red" << std::endl;
break;
case Color::Green:
std::cout << "RGB color: Green" << std::endl;
break;
case Color::Blue:
std::cout << "RGB color: Blue" << std::endl;
break;
default:
std::cout << "Unknown color" << std::endl;
}
} else {
std::cout << "Value is not an RGB object" << std::endl;
}
return 0;
}
  1. 泛型(Generic)

C++20引入了泛型的功能,可以使用<template>标签定义泛型模板。这使得代码更加通用和可重用。

以下是一个示例,演示如何使用泛型:

 

c复制代码

#include <iostream>
template <typename T>
T sum(T a, T b) {
return a + b;
}
int main() {
int x = 5;
double y = 3.5;
// 使用泛型函数计算整数和浮点数的和
std::cout << "Sum of " << x << " and " << y << ": " << sum(x, y) << std::endl;
return 0;
}

这个程序会输出:

 

makefile复制代码

Sum of 5 and 3.5: 8.5

在这个示例中,我们使用template <typename T>定义了一个泛型函数sum,它可以接受任何类型的参数并返回它们的和。然后,我们使用该函数计算了一个整数和一个浮点数的和。

泛型的引入使得代码更加灵活和可重用。

  1. 范围for循环(Range-based for loop)

C++20引入了范围for循环的功能,可以方便地遍历容器(如向量、列表、集合等)和数组。

以下是一个示例,演示如何使用范围for循环:

 

c复制代码

#include <iostream>
#include <vector>
int main() {
std::vector<int> numbers = {1, 2, 3, 4, 5};
// 使用范围for循环遍历numbers向量并输出每个元素的值
for (const auto &num : numbers) {
std::cout << num << " ";
}
std::cout << std::endl;
return 0;
}

这个程序会输出:

 

makefile复制代码

1 2 3 4 5

在这个示例中,我们使用for (const auto &num : numbers)语法来遍历numbers向量,其中num是每个元素的一个引用。这种写法更加简洁明了,使得代码更加易于阅读和理解。

当然,除了上面提到的,C++20还有以下几个重要的功能:

  1. 概念(Concepts):提供了一种描述函数或类模板约束的方式,以确保只有符合特定概念的类型才能用于函数或类模板的实例化。这有助于提高代码的清晰度和可维护性。
  2. 协程(Coroutines):允许函数在执行过程中挂起(suspend),以便稍后继续执行。协程在异步编程、生成器等场景中非常有用。
  3. 模块(Modules):将相关代码打包到模块中,并使用export关键字将其导出。这有助于组织代码,提高编译速度和可维护性。
  4. 类型别名(Type aliases):可以使用using关键字定义类型别名,这有助于提高代码的可读性和可维护性。
  5. 结构化绑定(Structured binding):允许将一个数组、元组或其他复合类型的多个成员变量同时赋值给不同的变量。这有助于简化代码并提高可读性。

这些功能进一步增强了C++20的语法和功能,使其更加现代化和灵活。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/88721.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(二)结构型模式:1、适配器模式(Adapter Pattern)(C++实现示例)

目录 1、适配器模式&#xff08;Adapter Pattern&#xff09;含义 2、适配器模式应用场景 3、适配器模式的UML图学习 4、C实现适配器模式的示例 1、适配器模式&#xff08;Adapter Pattern&#xff09;含义 将一个接口转换为客户端所期待的接口&#xff0c;从而使两个接口…

树和二叉树 --- 数据结构

目录 1.树的概念及结构 1.1树的概念 1.2树的表示 1.3树在实际生活中的运用 2.二叉树的概念及结构 2.1概念 2.2特殊的二叉树 2.3二叉树的性质 2.4二叉树的存储结构 1.树的概念及结构 1.1树的概念 树是一种非线性的数据结构&#xff0c;它是由n (n>0)个有限结点组成…

【server组件】——mysql连接池的实现原理

目录 1.池化技术 2.数据库连接池的定义 3.为什么要使用连接池 4. 数据库连接池的运行机制 5. 连接池与线程池的关系 6. CResultSet的设计 6.1构造函数 7. CDBConn的设计 6.1.构造函数 6.2.init——初始化连接 8.数据库连接池的设计要点 9.接口设计 9.1 构造函数 …

【LeetCode】617.合并二叉树

题目 给你两棵二叉树&#xff1a; root1 和 root2 。 想象一下&#xff0c;当你将其中一棵覆盖到另一棵之上时&#xff0c;两棵树上的一些节点将会重叠&#xff08;而另一些不会&#xff09;。你需要将这两棵树合并成一棵新二叉树。合并的规则是&#xff1a;如果两个节点重叠…

Azure资源命名和标记决策指南

参考 azure创建虚拟机在虚拟机中选择编辑标签&#xff0c;并添加标记&#xff0c;点击应用 3.到主页中转到所有资源 4. 添加筛选器并应用 5.查看结果&#xff0c;筛选根据给服务器定义的标签筛选出结果。 参考链接: https://learn.microsoft.com/zh-cn/azure/cloud-adoption…

【ArcGIS】经纬度数据转化成平面坐标数据

将点位置导入Gis中&#xff0c;如下&#xff08;经纬度表征位置&#xff09;&#xff1a; 如何利用Gis将其转化为平面坐标呢&#xff1f; Step1 坐标变换 坐标变换&#xff0c;打开ArcToolbox&#xff0c;找到“数据管理工具”->“投影和变换”->“要素”->“投影”…

JZ33二叉搜索树的后序遍历序列

题目地址&#xff1a;二叉搜索树的后序遍历序列_牛客题霸_牛客网 题目回顾&#xff1a; 解题思路&#xff1a; 使用栈 栈的特点是&#xff1a;先进后出。 通读题目后&#xff0c;我们可以得出&#xff0c;二叉搜索树是左子节点小于根节点&#xff0c;右子节点大于根节点。 …

【Tomcat】(Tomcat 下载Tomcat 启动Tomcat 简单部署 基于Tomcat进行网站后端开发)

文章目录 Tomcat下载Tomcat启动Tomcat简单部署 基于Tomcat进行网站后端开发 Tomcat Tomcat 是一个 HTTP 服务器.HTTP 协议就是 HTTP 客户端和 HTTP 服务器之间的交互数据的格式. HTTP 服务器我们可以通过 Java Socket 来实现. 而 Tomcat 就是基于 Java 实现的一个开源免费,也是…

CNN的特性

1、位移不变性 它指的是无论物体在图像中的什么位置&#xff0c;卷积神经网络的识别结果都应该是一样的。 因为CNN就是利用一个kernel在整张图像上不断步进来完成卷积操作的&#xff0c;而且在这个过程中kernel的参数是共享的。换句话说&#xff0c;它其实就是拿了同一张“通…

数据结构:选择排序

简单选择排序 选择排序是一种简单直观的排序算法。首先在未排序序列中找到最大&#xff08;最小&#xff09;的元素&#xff0c;存放到排序学列的其实位置&#xff0c;然后在剩余的未排序的元素中寻找最小&#xff08;最大&#xff09;元素&#xff0c;存放在已排序序列的后面…

cmake扩展(1)——VS+CMake创建Qt项目

创建项目 创建CMakeLists #cmake最低版本 cmake_minimum_required(VERSION 3.10) #项目名 project(regextool)#查找所有*.h,*.ui,*.cpp文件&#xff0c;并存入SOURCES中 file(GLOB SOURCES "*.cpp" "*.ui" "*.h")#开启moc set(CMAKE_AUTOMOC O…

计算机视觉中的特征检测和描述

一、说明 这篇文章是关于计算机视觉中特征检测和描述概念的简要理解。在其中&#xff0c;我们探讨了它们的定义、常用技术、简单的 python 实现和一些限制。 二、什么是特征检测和描述&#xff1f; 特征检测和描述是计算机视觉中的基本概念&#xff0c;在图像识别、对象跟踪和图…

Opencv特征检测之ORB算法原理及应用详解

Opencv特征检测之ORB算法原理及应用详解 特征是图像信息的另一种数字表达形式。一组好的特征对于在指定 任务上的最终表现至关重要。视觉里程 &#xff08;VO&#xff09; 的主要问题是如何根据图像特征来估计相机运动。但是&#xff0c;整幅图像用来计算分析通常比较耗时&…

机器学习终极指南:特征工程(02/2) — 第 -2 部分

接上文&#xff1a;机器学习终极指南&#xff1a;特征工程&#xff08;01/2&#xff09; 五、处理不平衡数据 处理不平衡的数据是机器学习的一个重要方面。不平衡数据是指目标变量的分布不均匀&#xff0c;并且与另一个类相比&#xff0c;一个类的代表性不足。这可能导致模型…

[内网渗透]CFS三层靶机渗透

文章目录 [内网渗透]CFS三层靶机渗透网络拓扑图靶机搭建Target10x01.nmap主机探活0x02.端口扫描0x03.ThinkPHP5 RCE漏洞拿shell0x04.上传msf后门(reverse_tcp)反向连接拿主机权限 内网渗透Target2&#xff08;1&#xff09;路由信息探测&#xff08;2&#xff09;msf代理配置&a…

两个数组的交集-C语言/Java

描述 给定两个数组 nums1 和 nums2 &#xff0c;返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序。&#xff08;1 < nums1.length, nums2.length < 1000&#xff0c;0 < nums1[i], nums2[i] < 1000&#xff09; 示例1 输入…

yolov5代码解读之train.py【训练模型】

哇咔咔&#xff0c;登场 代码开头都是一些导包到模块的&#xff1a; 接下来来到入口函数&#xff1a; 我们直接来到main函数的内容&#xff1a;&#xff08;分四个部分&#xff09; 前两部分&#xff1a; 关于main函数的第二部分中的resume参数&#xff08;496行&#xff09;&…

概率图模型(Probabilistic Graphical Model,PGM)

概率图模型&#xff08;Probabilistic Graphical Model&#xff0c;PGM&#xff09;&#xff0c;是一种用图结构来描述多元随机变量之间条件独立性的概率模型。它可以用来表示复杂的概率分布&#xff0c;进行有效的推理和学习&#xff0c;以及解决各种实际问题&#xff0c;如图…

mysql延时问题排查

背景介绍 最近遇到一个奇怪的问题&#xff0c;有个业务&#xff0c;每天早上七点半产生主从延时&#xff0c;延时时间12.6K&#xff1b; 期间没有抽数/备份等任务&#xff1b;查看慢日志发现&#xff0c;期间有一个delete任务&#xff0c;在主库执行了161s delete from xxxx_…

人类:我觉得1+1=956446,你觉得呢?大模型:啊对对对

大模型太「听话」了怎么办&#xff1f; 大型语言模型&#xff08;LLM&#xff09;的自然语言理解与生成能力一直备受称赞&#xff0c;特别是 ChatGPT 等对话式语言模型能够与人类流畅、自然地进行多轮对话。然而&#xff0c;最近一篇 Google DeepMind 的论文研究发现 LLM 普遍存…