微服务04-elasticsearch

1、es概念

1.1 文档和字段

elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

在这里插入图片描述

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

1.2 索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

在这里插入图片描述

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3 mysql与elasticsearch

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD
  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

在这里插入图片描述

2、索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建“库”和“表”。

2.1 mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

例如下面的json文档:

{"age": 21,"weight": 52.1,"isMarried": false,"info": "黑马程序员Java讲师","email": "zy@itcast.cn","score": [99.1, 99.5, 98.9],"name": {"firstName": "云","lastName": "赵"}
}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2 索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

2.2.1 创建索引库和映射

基本语法:

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

PUT /索引库名称
{"mappings": {"properties": {"字段名":{"type": "text","analyzer": "ik_smart"},"字段名2":{"type": "keyword","index": "false"},"字段名3":{"properties": {"子字段": {"type": "keyword"}}},// ...略}}
}

示例:

PUT /heima
{"mappings": {"properties": {"info":{"type": "text","analyzer": "ik_smart"},"email":{"type": "keyword","index": "falsae"},"name":{"properties": {"firstName": {"type": "keyword"}}},// ... 略}}
}

2.2.2 查询索引库

基本语法

  • 请求方式:GET

  • 请求路径:/索引库名

  • 请求参数:无

格式

GET /索引库名

示例
在这里插入图片描述

2.2.3.修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明

PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}

示例
在这里插入图片描述

2.2.4.删除索引库

语法:

  • 请求方式:DELETE

  • 请求路径:/索引库名

  • 请求参数:无

格式:

DELETE /索引库名

在kibana中测试:

2.2.5 总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

3、文档操作

3.1 新增文档

语法:

POST /索引库名/_doc/文档id
{"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},// ...
}

示例:

POST /heima/_doc/1
{"info": "黑马程序员Java讲师","email": "zy@itcast.cn","name": {"firstName": "云","lastName": "赵"}
}

响应:
在这里插入图片描述

3.2 查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

GET /heima/_doc/1

查看结果:
在这里插入图片描述

3.3.删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据id删除数据
DELETE /heima/_doc/1

结果:
在这里插入图片描述

3.4 修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段

3.4.1 全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}

示例:

PUT /heima/_doc/1
{"info": "黑马程序员高级Java讲师","email": "zy@itcast.cn","name": {"firstName": "云","lastName": "赵"}
}

3.4.2 增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{"doc": {"字段名": "新的值",}
}

示例:

POST /heima/_update/1
{"doc": {"email": "ZhaoYun@itcast.cn"}
}

3.5 总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档:
    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
    • 增量修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}

4、RestAPI(※)

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client(※)

4.1.导入Demo工程

4.1.1 导入数据

数据结构如下:

CREATE TABLE `tb_hotel` (`id` bigint(20) NOT NULL COMMENT '酒店id',`name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',`address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',`price` int(10) NOT NULL COMMENT '酒店价格;例:329',`score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',`brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',`city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',`star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',`business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',`latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',`longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',`pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

4.1.2 导入项目

项目结构如图:
在这里插入图片描述

4.1.3 mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用ik_max_word

来看下酒店数据的索引库结构:

PUT /hotel
{"mappings": {"properties": {"id": {"type": "keyword"},"name":{"type": "text","analyzer": "ik_max_word","copy_to": "all"},"address":{"type": "keyword","index": false},"price":{"type": "integer"},"score":{"type": "integer"},"brand":{"type": "keyword","copy_to": "all"},"city":{"type": "keyword","copy_to": "all"},"starName":{"type": "keyword"},"business":{"type": "keyword"},"location":{"type": "geo_point"},"pic":{"type": "keyword","index": false},"all":{"type": "text","analyzer": "ik_max_word"}}}
}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

地理坐标说明:
在这里插入图片描述

copy_to说明:
在这里插入图片描述

4.1.4 初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)引入es的RestHighLevelClient依赖:

<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties><java.version>1.8</java.version><elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

3)初始化RestHighLevelClient:

初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")
));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

package cn.itcast.hotel;import org.apache.http.HttpHost;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;import java.io.IOException;public class HotelIndexTest {private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}

4.2 创建索引库

4.2.1 代码解读

创建索引库的API如下:

在这里插入图片描述

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

4.2.2 完整示例

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

package cn.itcast.hotel.constants;public class HotelConstants {public static final String MAPPING_TEMPLATE = "{\n" +"  \"mappings\": {\n" +"    \"properties\": {\n" +"      \"id\": {\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"name\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"address\":{\n" +"        \"type\": \"keyword\",\n" +"        \"index\": false\n" +"      },\n" +"      \"price\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"score\":{\n" +"        \"type\": \"integer\"\n" +"      },\n" +"      \"brand\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"city\":{\n" +"        \"type\": \"keyword\",\n" +"        \"copy_to\": \"all\"\n" +"      },\n" +"      \"starName\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"business\":{\n" +"        \"type\": \"keyword\"\n" +"      },\n" +"      \"location\":{\n" +"        \"type\": \"geo_point\"\n" +"      },\n" +"      \"pic\":{\n" +"        \"type\": \"keyword\",\n" +"        \"index\": false\n" +"      },\n" +"      \"all\":{\n" +"        \"type\": \"text\",\n" +"        \"analyzer\": \"ik_max_word\"\n" +"      }\n" +"    }\n" +"  }\n" +"}";
}

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

@Test
void createHotelIndex() throws IOException {// 1.创建Request对象CreateIndexRequest request = new CreateIndexRequest("hotel");// 2.准备请求的参数:DSL语句request.source(MAPPING_TEMPLATE, XContentType.JSON);// 3.发送请求client.indices().create(request, RequestOptions.DEFAULT);
}

4.3 删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {// 1.创建Request对象DeleteIndexRequest request = new DeleteIndexRequest("hotel");// 2.发送请求client.indices().delete(request, RequestOptions.DEFAULT);
}

4.4 判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {// 1.创建Request对象GetIndexRequest request = new GetIndexRequest("hotel");// 2.发送请求boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);// 3.输出System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

4.5 总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要,其它是无参)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

5、RestClient操作文档(※)

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口
package cn.itcast.hotel;import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.service.IHotelService;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;import java.io.IOException;
import java.util.List;@SpringBootTest
public class HotelDocumentTest {@Autowiredprivate IHotelService hotelService;private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}

5.1 新增文档

我们要将数据库的酒店数据查询出来,写入elasticsearch中。

5.1.1 索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data
@TableName("tb_hotel")
public class Hotel {@TableId(type = IdType.INPUT)private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String longitude;private String latitude;private String pic;
}

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location

因此,我们需要定义一个新的类型,与索引库结构吻合:

package cn.itcast.hotel.pojo;import

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/89337.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【hello C++】特殊类设计

目录 一、设计一个类&#xff0c;不能被拷贝 二、设计一个类&#xff0c;只能在堆上创建对象 三、设计一个类&#xff0c;只能在栈上创建对象 四、请设计一个类&#xff0c;不能被继承 五、请设计一个类&#xff0c;只能创建一个对象(单例模式) C&#x1f337; 一、设计一个类&…

【设计模式】单例模式

单例模式&#xff08;Singleton Pattern&#xff09;是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式&#xff0c;它提供了一种创建对象的最佳方式。 这种模式涉及到一个单一的类&#xff0c;该类负责创建自己的对象&#xff0c;同时确保只有单个对象被创建…

勘探开发人工智能技术:机器学习(3)

0 提纲 4.1 logistic回归 4.2 支持向量机(SVM) 4.3 PCA 1 logistic回归 用超平面分割正负样本, 考虑所有样本导致的损失. 1.1 线性分类器 logistic 回归是使用超平面将空间分开, 一边是正样本, 另一边是负样本. 因此, 它是一个线性分类器. 如图所示, 若干样本由两个特征描…

每日一题——二叉树中和为某一值的路径

题目 给定一个二叉树root和一个值 sum &#xff0c;判断是否有从根节点到叶子节点的节点值之和等于 sum 的路径。 该题路径定义为从树的根结点开始往下一直到叶子结点所经过的结点叶子节点是指没有子节点的节点路径只能从父节点到子节点&#xff0c;不能从子节点到父节点总节点…

【解读Spikingjelly】使用单层全连接SNN识别MNIST

原文档&#xff1a;使用单层全连接SNN识别MNIST — spikingjelly alpha 文档 代码地址&#xff1a;完整的代码位于activation_based.examples.lif_fc_mnist.py GitHub - fangwei123456/spikingjelly: SpikingJelly is an open-source deep learning framework for Spiking Neur…

【Pytroch】基于支持向量机算法的数据分类预测(Excel可直接替换数据)

【Pytroch】基于支持向量机算法的数据分类预测&#xff08;Excel可直接替换数据&#xff09; 1.模型原理2.数学公式3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果 1.模型原理 支持向量机&#xff08;Support Vector Machine&#xff0c;SVM&#xff09;是一种强大的监…

metaRTC7 demo mac/ios编译指南

概要 metaRTC7.0开始全面支持mac/ios操作系统&#xff0c;新版本7.0.023 mac os demo 包含有srs/zlm的推拉流演示。发布版自带了x64版第三方类库&#xff0c;arm版第三方类库还需开发者自己编译。 源码下载 下载文件metartc7.023.7z https://github.com/metartc/metaRTC/re…

php从静态资源到动态内容

1、从HTML到PHP demo.php:后缀由html直接改为php,实际上当前页面已经变成了动态的php应用程序脚本 demo.php: 允许通过<?php ... ?>标签,添加php代码到当前脚本中 php标签内部代码由php.exe解释, php标签之外的代码原样输出,仍由web服务器解析 <!DOCTYPE html>…

【云原生】kubernetes中容器的资源限制

目录 1 metrics-server 2 指定内存请求和限制 3 指定 CPU 请求和限制 资源限制 在k8s中对于容器资源限制主要分为以下两类: 内存资源限制: 内存请求&#xff08;request&#xff09;和内存限制&#xff08;limit&#xff09;分配给一个容器。 我们保障容器拥有它请求数量的…

【uniapp】使用Vs Code开发uniapp:

文章目录 一、使用命令行创建uniapp项目&#xff1a;二、安装插件与配置&#xff1a;三、编译和运行:四、修改pinia&#xff1a; 一、使用命令行创建uniapp项目&#xff1a; 二、安装插件与配置&#xff1a; 三、编译和运行: 该项目下的dist》dev》mp-weixin文件导入微信开发者…

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比 目录 时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 时序预测 | …

【 运维这些事儿 】- Gerrit代码审查详

文章目录 背景作用代码审查工具Gerrit镜像构建Dockerfile 部署配置 Gitlab代码同步ssh-agent 相关概念常用命令Git 配置使用 Git Review针对已有项目添加commit-msg&#xff0c;用于自动添加changeId添加源配置 .gitreview备注指定审核人自定义git命令 开发使用代码审查 背景 …

nginx基于主机和用户访问控制以及缓存简单例子

一.基于主机访问控制 1.修改nginx.conf文件 2.到其他主机上测试 &#xff08;1&#xff09;191主机 &#xff08;2&#xff09;180主机 二.基于用户访问控制 1.修改nginx.conf文件 2.使用hpasswd为用户创建密码文件&#xff0c;并指定到刚才指定的密码文件webck 3.测试…

item_get_desc获得TB/TM商品描述

一、接口参数说明&#xff1a; item_get_desc-获得TB/TM商品描述&#xff0c;点击更多API调试&#xff0c;请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/item_get_desc 名称类型必须描述keyString是调用key&#xff08;…

Pytorch基于VGG cosine similarity实现简单的以图搜图(图像检索)

代码如下&#xff1a; from PIL import Image from torchvision import transforms import os import torch import torchvision import torch.nn.functional as Fclass VGGSim(torch.nn.Module):def __init__(self):super(VGGSim, self).__init__()blocks []blocks.append(t…

Python Opencv实践 - 图像缩放

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg_cat cv.imread("../SampleImages/cat.jpg", cv.IMREAD_COLOR) plt.imshow(img_cat[:,:,::-1])#图像绝对尺寸缩放 #cv.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) #指定Size大…

企业服务器数据库遭到malox勒索病毒攻击后如何解决,勒索病毒解密

网络技术的发展不仅为企业带来了更高的效率&#xff0c;还为企业带来信息安全威胁&#xff0c;其中较为常见的就是勒索病毒攻击。近期&#xff0c;我们公司收到很多企业的求助&#xff0c;企业的服务器数据库遭到了malox勒索病毒攻击&#xff0c;导致系统内部的许多重要数据被加…

大数据课程I3——Kafka的消息流与索引机制

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 掌握Kafka的消息流处理; ⚪ 掌握Kafka的索引机制; ⚪ 掌握Kafka的消息系统语义; 一、Kafka消息流处理 1. Producer 写入消息 流程说明: 1. producer 要向Kafka生产消息,需要先通过…

使用node搭建服务器,前端自己写接口,将vue或react打包后生成的dist目录在本地运行

使用node.jsexpress或者使用node.jspm2搭建服务器&#xff0c;将vue或react打包后生成的dist目录在本地运行 vue项目打包后生成的dist目录如果直接在本地打开index.html,在浏览器中会报错&#xff0c;无法运行起来。 通常我是放到后端搭建的服务上面去运行&#xff0c;当时前端…