【漫话机器学习系列】066.贪心算法(Greedy Algorithms)

贪心算法(Greedy Algorithms)

贪心算法是一种逐步构建解决方案的算法,每一步都选择当前状态下最优的局部选项(即“贪心选择”),以期望最终获得全局最优解。贪心算法常用于解决最优化问题。


核心思想

  1. 贪心选择性质
    在每一步选择中,通过选择当前的局部最优解,能够保证最终得到的解是全局最优解。

  2. 无后效性(No Backtracking)
    当前步骤的选择不会影响之后的选择,即一个问题的解决可以通过局部的选择逐步逼近全局最优。

  3. 最优子结构性质
    一个问题的全局最优解可以通过其子问题的最优解组合得到。


贪心算法的一般步骤

  1. 问题分解:将问题分解为若干个子问题。
  2. 选择策略:为每一步定义贪心选择规则(如最大化或最小化)。
  3. 验证解的可行性:每一步选定的解需满足问题的约束条件。
  4. 检查最优性:选择的局部解是否能保证全局最优。
  5. 重复直到完成:重复贪心选择直至问题结束。

常见应用场景

  1. 活动选择问题(Activity Selection Problem)
    给定多个活动的开始和结束时间,选择最大数量的活动使得它们互不重叠。

  2. 背包问题(Knapsack Problem, 分数背包)
    在分数背包问题中,按单位重量价值排序,并优先选择单位价值最高的物品。

  3. 最小生成树(Minimum Spanning Tree)

    • Prim 算法
    • Kruskal 算法
  4. 最短路径问题(Shortest Path Problem)

    • Dijkstra 算法
  5. 哈夫曼编码(Huffman Encoding)
    用于生成最优前缀编码,减少数据压缩的存储空间。


优点

  1. 简单直观:易于实现,且解决问题的过程清晰。
  2. 高效:通过贪心选择,通常只需线性或接近线性的时间复杂度。
  3. 适用范围广:许多经典问题都能用贪心算法求解。

缺点

  1. 局部最优≠全局最优
    在某些问题中,贪心算法无法保证全局最优解。
    • 例如:0-1 背包问题的全局最优解通常无法通过贪心法获得。
  2. 适用性有限
    只有具有最优子结构性质和贪心选择性质的问题才能用贪心算法。

代码示例:活动选择问题

给定活动的开始和结束时间,选择最多数量的活动,使其不重叠。

def activity_selection(start_times, end_times):activities = sorted(zip(start_times, end_times), key=lambda x: x[1])  # 按结束时间排序selected = []last_end_time = 0for start, end in activities:if start >= last_end_time:  # 当前活动的开始时间不早于上一个选择活动的结束时间selected.append((start, end))last_end_time = endreturn selected# 示例
start_times = [1, 3, 0, 5, 8, 5]
end_times = [2, 4, 6, 7, 9, 9]
result = activity_selection(start_times, end_times)
print("选择的活动:", result)

运行结果 

选择的活动: [(1, 2), (3, 4), (5, 7), (8, 9)]

 


总结

贪心算法通过逐步构建解决方案,在每一步都选择当前状态下的最优选项,是解决许多经典最优化问题的强大工具。但在应用贪心算法时,需要验证问题是否满足最优子结构和贪心选择性质,否则可能无法得到正确结果。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/8960.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WPF基础 | WPF 常用控件实战:Button、TextBox 等的基础应用

WPF基础 | WPF 常用控件实战:Button、TextBox 等的基础应用 一、前言二、Button 控件基础2.1 Button 的基本定义与显示2.2 按钮样式设置2.3 按钮大小与布局 三、Button 的交互功能3.1 点击事件处理3.2 鼠标悬停与离开效果3.3 按钮禁用与启用 四、TextBox 控件基础4.…

GD32的GD库开发

所有的Cortex-M处理器都有相同的SysTick定时器,因为CMSIS-Core头文件中定义了一个名为SysTick的结构体。 这个定时器可以用作延时函数,不管是STM32的芯片还是GD32,AT32的芯片,delay函数都可以这么写,只要它是cortex-M…

跨域问题及解决方案

跨域问题不仅影响开发效率,还可能导致项目进度延误。因此,理解和掌握跨域问题的原理及其解决方案对于前端开发者和后端开发者来说都至关重要。本文将详细介绍什么是跨域、跨域产生的原因,以及常见的后端跨域解决方案。 文章目录 一、什么是跨…

MoE的学习

1.MoE的介绍 混合专家模型(Mixture of Experts,MoE)是一种先进的神经网络架构,旨在通过整合多个模型或“专家”的预测来提升整体模型性能。MoE模型的核心思想是将输入数据分配给不同的专家子模型,然后将所有子模型的输…

c++学习第十四天

提示:以下是本篇文章正文内容,下面案例可供参考。 //力扣代码 class Solution {const char* numStrArr[10]{"","","abc","def","ghi","jkl","mno","pqrs","tuv&q…

【deepseek】deepseek-r1本地部署-第二步:huggingface.co替换为hf-mirror.com国内镜像

一、背景 由于国际镜像国内无法直接访问,会导致搜索模型时加载失败,如下: 因此需将国际地址替换为国内镜像地址。 二、操作 1、使用vscode打开下载路径 2、全局地址替换 关键字 huggingface.co 替换为 hf-mirror.com 注意:务…

循序渐进kubernetes-RBAC(Role-Based Access Control)

文章目录 概要Kubernetes API了解 Kubernetes 中的 RBACRoles and Role Bindings:ClusterRoles and ClusterRoleBindings检查访问权限:外部用户结论 概要 Kubernetes 是容器化应用的强大引擎,但仅仅关注部署和扩展远远不够,集群的安全同样至…

思维练习题

目录 第一章 假设法1.题目1. 如何问问题2. 他们的职业是分别什么3. 谁做对了4. 鞋子的颜色 2.答案 空闲时间写一些思维题来锻炼下思维逻辑(题目均收集自网上,分析推理为自己所写)。 第一章 假设法 一个真实的假设往往可以让事实呈现眼前&…

HarmonyOS:创建应用静态快捷方式

一、前言 静态快捷方式是一种在系统中创建的可以快速访问应用程序或特定功能的链接。它通常可以在长按应用图标,以图标和相应的文字出现在应用图标的上方,用户可以迅速启动对应应用程序的组件。使用快捷方式,可以提高效率,节省了查…

深入探索C++17的std::any:类型擦除与泛型编程的利器

文章目录 基本概念构建方式构造函数直接赋值std::make_anystd::in_place_type 访问值值转换引用转换指针转换 修改器emplaceresetswap 观察器has_valuetype 使用场景动态类型的API设计类型安全的容器简化类型擦除实现 性能考虑动态内存分配类型转换和异常处理 总结 在C17的标准…

DeepSeek-R1 蒸馏模型及如何用 Ollama 在本地运行DeepSeek-R1

在人工智能飞速发展的领域中,大型语言模型(LLMs)的出现可谓是一项重大变革。在这些模型里,DeepSeek - R1 及其蒸馏模型备受瞩目,它们融合了独特的能力与高可用性。今天我们一起聊一下 DeepSeek - R1 蒸馏模型究竟是什么…

机器学习day3

自定义数据集使用框架的线性回归方法对其进行拟合 import matplotlib.pyplot as plt import torch import numpy as np # 1.散点输入 # 1、散点输入 # 定义输入数据 data [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1]…

java多线程学习笔记

文章目录 关键词1.什么是多线程以及使用场景?2.并发与并行3.多线程实现3.1继承 Thread 类实现3.2Runnable 接口方式实现3.3Callable接口/Future接口实现3.4三种方式总结 4.常见的成员方法(重点记忆)94.1setName/currentThread/sleep要点4.2线程的优先级…

无耳科技 Solon v3.0.7 发布(2025农历新年版)

Solon 框架! Solon 框架由杭州无耳科技有限公司(下属 Noear 团队)开发并开源。是新一代,面向全场景的 Java 企业级应用开发框架。从零开始构建(非 java-ee 架构),有灵活的接口规范与开放生态。…

Redis常用命令合集【一】

1.Redis常用命令 Redis是典型的key-value数据库,key一般是字符串,而value包含很多不同的数据类型: Redis为了方便我们学习,将操作不同数据类型的命令也做了分组,在官网( https://redis.io/commands &#…

python学opencv|读取图像(四十八)使用cv2.bitwise_xor()函数实现图像按位异或运算

【0】基础定义 按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。 按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。 按位取反运算:一个二进制数,0变1,1变0。 按…

docker 学习笔记

一、docker容器快速上手以及简单操作 docker的image和container image镜像 docker image就是一个read.only文件,可以理解成一个模版,docker image具有分层的概念 可以自己制作,也可以从registry拉去 container容器 一个运行中的docker …

【PyTorch】5.张量索引操作

目录 1. 简单行、列索引 2. 列表索引 3. 范围索引 4. 布尔索引 5. 多维索引 个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为…

穿心莲内酯(andrographolide)生物合成CYP72-文献精读106

Two CYP72 enzymes function as Ent-labdane hydroxylases in the biosynthesis of andrographolide in Andrographis paniculata 两种CYP72酶在穿心莲(Andrographis paniculata)中作为Ent-labdane羟化酶,在穿心莲内酯(andrograp…

关于圆周率的新认知 - 2

当未知长度的单位 1 和已完成长度的单位 1 之间的比例不是 1:1 而是其它的数值的时候,不难看出,这时候的圆周率就变成了“椭圆周率”。你可能要说,这不是椭圆积分吗?对了,这就是椭圆积分。但是我们不要考虑什么椭圆积分…