计算机竞赛 opencv 图像识别 指纹识别 - python

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于机器视觉的指纹识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

指纹是指人类手指上的条状纹路, 它们的形成依赖于胚胎发育时的环境。“没有2个完全相同的指纹”这一观点已经得到公认。指纹识别已经有了很长一段历史。

据考古学家证实:公元前6 000年以前, 指纹作为身份鉴别的工具已经在古叙利亚和中国开始应用。到了20世纪80年代,、光学扫描这2项技术的革新,
使得它们作为指纹取像的工具成为现实, 从而使指纹识别可以在其他领域中得以应用。

现在, 随着取像设备的引入及其飞速发展, 生物指纹识别技术的逐渐成熟, 可靠的比对算法的发现都为指纹识别技术提供了更广阔的舞台。

本项目实现了一种指纹识别系统,通过过滤过程来确定用户指纹是否与注册的指纹匹配。通过过滤技术对捕获的指纹进行处理,以从捕获的图像中去除噪声。去除噪声后的最终结果与注册的指纹进行特征匹配,以确定它们是否相同。

2 效果展示

在这里插入图片描述
在这里插入图片描述
3

3 具体实现

3.1 图像对比过滤

图像融合是一种图像增强方法,这里先融合两个图像便于特征点对比。利用的是opencv封装的函数

    cv2.addWeighted()

相关代码

    def apply_Contrast(img):alpha = 0.5 # assigned weight to the first imagebeta = 0.5 # assigned weight to the second imageimg_second = np.zeros(img.shape, img.dtype) # second image, copy of first onecontrast = cv2.addWeighted(img, alpha, img_second, 0, beta) # applying contrastreturn contrast

3.2 图像二值化

简介

图像二值化( Image
Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。二值图像每个像素只有两种取值:要么纯黑,要么纯白。
在这里插入图片描述
二值图像数据足够简单,许多视觉算法都依赖二值图像。通过二值图像,能更好地分析物体的形状和轮廓。
在计算机视觉里,一般用矩阵来表示图像。也就是说,无论你的图片看上去多么好吃,对计算机来说都不过是个矩阵而已。在这个矩阵里,每一个像素就是矩阵中的一个元素。在三通道的彩色图像中,这个元素是由三个数字组成的元组。而对于单通道的灰度图像来说,这个元素就是一个数字。这个数字代表了图像在这个点的亮度,数字越大像素点也就越亮,在常见的八位单通道色彩空间中,0代表全黑,255代表全白。

相关代码

    def apply_Binarization(img):# if pixel value is greater then the threshold value it is assigned a singular color of either black or white_, mask = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY_INV)return mask

3.3 图像侵蚀细化

图像侵蚀(腐蚀)

腐蚀(Erosion)- shrink image regions,侵蚀是数学形态学领域的两个基本算子之一,另一个是膨胀。
它通常应用于二值图像,但是有些版本可用于灰度图像。 算子对二值图像的基本作用是侵蚀前景像素(通常为白色像素)区域的边界。
因此,前景像素的区域尺寸缩小,并且这些区域内的孔洞变大。
在这里插入图片描述
图像细化

细化(Thinning)- structured erosion using image pattern
matching,细化是一种形态学操作,用于从二值图像中删除选定的前景像素,有点像侵蚀或开口。 它可以用于多种应用程序,但是对于骨架化特别有用。
在这种模式下,通常通过将所有行减少到单个像素厚度来整理边缘检测器的输出。 细化通常仅应用于二值图像,并产生另一个二值图像作为输出。

在这里插入图片描述
相关代码

    def apply_Erosion(img):kernal = np.ones((3,3), np.uint8) # shape applied to image, 3x3 square shape is applied to contrast imageerosion = cv2.erode(img, kernal, iterations=1) # erosion mask applied to the contrast image to thin fingerprint ridgesreturn erosion

3.4 图像增强

图像增强的主要目的是提高图像的质量和可辨识度,使图像更有利于观察或进一步分析处理。图像增强技术一般通过对图像的某些特征,例如边缘信息、轮廓信息和对比度等进行突出或增强,从而更好的显示图像的有用信息,提高图像的使用价值。图像增强技术是在一定标准下,处理后的图像比原图像效果更好。

相关代码

def apply_highlighting(img):
​        feature_points = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
​        Image_blue = np.array(feature_points, copy=True)
​    white_px = np.asarray([255, 255, 255])blue_px = np.asarray([0  , 255  , 255  ])(row, col, _) = feature_points.shapefor r in range(row):for c in range(col):px = feature_points[r][c]if all(px == white_px):Image_blue[r][c] = blue_pxreturn Image_blue

3.5 特征点检测

指纹特征提取的主要目的是计算指纹核心点(Core)和细节点(Minutia)的特征信息。在提取指纹核心点时,采用的是Poincare
Index算法,该算法的思路是在指纹图像某像素点区域内,按围绕该点的闭合曲线逆时针方向旋转一周,计算方向角度旋转变化量的和,最后以计算结果来寻找核心点。计算过程中如果某像素点的Poincare
Index值为π则判定为核心点,然后便提取该点的坐标与方向场信息,记为P(Cx, Cy, θc)。

相关代码

def show_featurepoints(img):
​        ​    #show feature points found in fingerprint using orb detector
​    orb  = cv2.ORB_create(nfeatures=1200)
​    keypoints, descriptors = orb.detectAndCompute(img, None)
​    featurepoint_img = img
​    featurepoint_img = cv2.drawKeypoints(featurepoint_img, keypoints, None, color=(255, 0 ,0))return featurepoint_img

4 OpenCV

简介
Opencv(Open Source Computer Vision
Library)是一个基于开源发行的跨平台计算机视觉库,它实现了图像处理和计算机视觉方面的很多通用算法,已成为计算机视觉领域最有力的研究工具。在这里我们要区分两个概念:图像处理和计算机视觉的区别:图像处理侧重于“处理”图像–如增强,还原,去噪,分割等等;而计算机视觉重点在于使用计算机来模拟人的视觉,因此模拟才是计算机视觉领域的最终目标。
OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS,
如今也提供对于C#、Ch、Ruby,GO的支持。

基础功能速查表
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/90099.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode150道面试经典题-- 快乐数(简单)

1.题目 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为: 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果这个过程 结果为 1&am…

【第一阶段】kotlin中反引号中的函数名特点

在kotlin中可以直接中文定义函数,使用反引号进行调用 eg: fun main() {2023年8月9日定义的函数(5) }private fun 2023年8月9日定义的函数(num:Int){println("反引号的用法$num") }执行结果 在Java中is,in可以定义方法,但是在kotlin中is,in是…

日常BUG——Java使用Bigdecimal类型报错

😜作 者:是江迪呀✒️本文关键词:日常BUG、BUG、问题分析☀️每日 一言 :存在错误说明你在进步! 一、问题描述 直接上代码: Test public void test22() throws ParseException {System.out.p…

uniapp开发小程序-有分类和列表时,进入页面默认选中第一个分类

一、效果: 如下图所示,进入该页面后,默认选中第一个分类,以及第一个分类下的列表数据。 二、代码实现: 关键代码: 进入页面时,默认调用分类的接口,在分类接口里做判断&#xff…

分布式 - 消息队列Kafka:Kafka 消费者消息消费与参数配置

文章目录 1. Kafka 消费者消费消息01. 创建消费者02. 订阅主题03. 轮询拉取数据 2. Kafka 消费者参数配置01. fetch.min.bytes02. fetch.max.wait.ms03. fetch.max.bytes04. max.poll.records05. max.partition.fetch.bytes06. session.timeout.ms 和 heartbeat.interval.ms07.…

docker安装达梦数据库

下载安装包 https://eco.dameng.com/download/ 启动达梦数据库 docker run -d -p 5236:5236 --restartalways --name dm8_01 --privilegedtrue -e PAGE_SIZE16 -e LD_LIBRARY_PATH/opt/dmdbms/bin -e INSTANCE_NAMEdm8_01 -v /data/dm8_01:/opt/dmdbms/data dm8_single:v8.…

freeswitch的mod_xml_curl模块动态获取configuration

概述 freeswitch是一款简单好用的VOIP开源软交换平台。 mod_xml_curl模块支持从web服务获取xml配置,本文介绍如何动态获取acl配置。 环境 centos:CentOS release 7.0 (Final)或以上版本 freeswitch:v1.6.20 GCC:4.8.5 web…

vue3+element-plus表格默认排序default-sort失效问题

场景 在使用动态数据渲染的场景&#xff0c;el-table设置默认属性default-sort失效。 原因 el-table的default-sort属性是针对静态数据的&#xff0c;如果是动态数据&#xff0c;default-sort则无法监听到。 案例&#xff1a;静态数据 <template><el-table:data&…

.gitignore匹配规则

目录 1.直接一个名称2.斜杠 /3.符号 *4.问号 &#xff1f;5.感叹号 &#xff01;6.gitkeep 借鉴抖音账号&#xff1a; 渡一前端提薪课 1.直接一个名称 会忽略目录下的所有该名称文件和文件夹&#xff0c;无论嵌套多深。 2.斜杠 / 1.斜杠在开头(/dist)&#xff1a;忽略和.gitig…

国产数据库-内核特性-低基数全局字典

国产数据库-内核特性-StarRocks低基数全局字典 StarRocks2.0引入了低基数全局字典&#xff0c;可以通过全局字典将字符串的相关操作转换成整型相关操作&#xff0c;大大提升查询性能。 1、低基数字典 对于利用整型替代字符串进行处理&#xff0c;通常使用字典编码进行优化。Sta…

JavaScript版本ES5/ES6及后续版本

JavaScript简史 1995&#xff1a; Brendan Eich在短短10天内创建了JavaScript的第一个版本。它被称为摩卡&#xff0c;但已经具备了现代JavaScript的许多基本特性! 1996&#xff1a; 为了吸引Java开发人员&#xff0c;Mocha先是更改为LiveScript&#xff0c;然后又更改为Ja…

JavaScript进阶 第一天

作用域函数进阶解构赋值 一.作用域 局部作用域全局作用域作用域链JS垃圾回收机制闭包变量提升 1.1 作用域 ① 概念&#xff1a;规定了变量能够被访问的“范围”&#xff0c;离开了这个"范围"&#xff0c;变量不能被访问 ② 分类 局部作用域 &#xff08;1&…

定长内存池设计ConcurrentMemoryPool

原理 还回来的内存用链表串联起来&#xff0c;称为自由链表 内存块自身进行链接&#xff0c;前四个字节存下一个的地址 结构 template<class T> class ObjectPool { public:T* New(){} private:char* _memory nullptr; //方便切割void* _freeList nullptr; };第一步…

探索 C++ 标准库:std::string 库函数用法示例

目录 引言 一、构造函数 1.1 string() 1.2 string (const string& str) 1.3 string (const string& str, size_t pos, size_t len npos) 1.4 string (const char* s) 1.5 string (const char* s, size_t n) 1.6 string (size_t n, char c&#xff09;​ 二、容…

报名小程序PowerActivity配置

https://github.com/zhihuliukanshan/PowerActivity/assets/100545532/9b3e2a3b-f810-4c1f-90d5-9596d99abbd3 导入代码后&#xff0c;需要配置的位置有&#xff1a; 1、miniprogram\setting\setting.js中的CLOUD_ID&#xff1a; module.exports {//### 环境相关 CLOUD_ID: …

如何在iPhone手机上修改手机定位和模拟导航?

如何在iPhone手机上修改手机定位和模拟导航&#xff1f; English 首先&#xff0c;你需要在Mac电脑上下载安装 Location Simulator/定位模拟工具 和 Runner 这两款应用程序。 完成安装后&#xff0c;打开软件&#xff0c;并用USB连接手机设备 修改iPhone手机定位和模拟导航 …

HTTPS安全通信

HTTPS,TLS/SSL Hyper Text Transfer Protocol over Secure Socket Layer,安全的超文本传输协议,网景公式设计了SSL(Secure Sockets Layer)协议用于对Http协议传输的数据进行加密,保证会话过程中的安全性。 使用TCP端口默认为443 TLS:(Transport Layer Security,传输层…

Windows 11 家庭中文版找不到组策略文件gpedit.msc

最近因为调整日期问题需要用到组策略文件gpedit.msc,但是发现找不到文件 在按键盘 winR 打开运行界面输入 gpedit.msc 回车 Windows找不到文件’gpedit.msc’。请确定文件名是否正确后&#xff0c;再试-次。 检查电脑Windows系统版本 是 Windows 11 家庭中文版 果断早网上搜…

Idea 快捷键整理

Idea快捷键和自动代码补全汇总 idea快捷键汇总 Ctrl 快捷键说明Ctrl F在当前文件进行文本查找 &#xff08;必备&#xff09;Ctrl R在当前文件进行文本替换 &#xff08;必备&#xff09;Ctrl Z撤销 &#xff08;必备&#xff09;Ctrl Y删除光标所在行 或 删除选中的行 &am…

应急响应-钓鱼邮件的处理思路溯源及其反制

0x00 钓鱼邮件的危害 1.窃取用户敏感信息&#xff0c;制作虚假网址&#xff0c;诱导用户输入敏感的账户信息后记录 2.携带病毒木马程序&#xff0c;诱导安装&#xff0c;使电脑中病毒木马等 3.挖矿病毒的传输&#xff0c;勒索病毒的传输等等 0x01 有指纹的钓鱼邮件的溯源处理…