TPAMI, 2023 | 用压缩隐逆向神经网络进行高精度稀疏雷达成像

CoIR: Compressive Implicit Radar | IEEE TPAMI, 2023 | 用压缩隐逆向神经网络进行高精度稀疏雷达成像

注1:本文系“无线感知论文速递”系列之一,致力于简洁清晰完整地介绍、解读无线感知领域最新的顶会/顶刊论文(包括但不限于Nature/Science及其子刊;MobiCom, Sigcom, MobiSys, NSDI, SenSys, Ubicomp;JSAC,雷达学报等)。
本次介绍的论文是:<2023, IEEE TPAMI, CoIR: Compressive Implicit Radar>
文章DOI: 10.1109/TPAMI.2023.3301553。

关键词:雷达成像,稀疏傅里叶变换,隐逆向神经网络,压缩感知
在这里插入图片描述

1 引言

随着毫米波技术的发展,毫米波雷达作为一种新型的成像方法,备受关注。与传统成像设备如摄像机和激光雷达相比,毫米波雷达的最大优势在于可以穿透烟尘等严重的环境条件,从而获得高质量的图像。 但是,毫米波雷达也面临角分辨率低的问题。为了提高角分辨率,一种思路是增加天线阵列的口径大小,但这将带来天线耦合、功耗增加、读出带宽增大等问题。因此,如何在硬件资源有限的条件下,提高毫米波雷达的角分辨率,是该领域当前面临的关键技术挑战。

本文提出一种名为 CoIR 的新方法,可实现毫米波雷达的高精度稀疏成像。该方法的主要创新点包括:1)设计一种稀疏线性天线阵,大大减少所需接收天线数量;2)利用隐式神经网络作为先验,实现对压缩后数据的重构。
在这里插入图片描述

2 动机

毫米波成像系统可大致分为三类:

  • 大规模物理天线阵列:可实现实时成像,但成本高昂;

  • SAR技术:使用天线移动来合成大孔径,但成像速率低,系统复杂;

  • MIMO天线阵列:使用多输入多输出技术来合成大孔径,但需要大量的雷达芯片。

这些方法要么成本高,要么取得图像速度慢,难以应用于对成本和速度都有要求的应用中。

另一方面,稀疏雷达成像技术通过使用次Nyquist采样,可有效减少所需天线数量,降低系统成本。但是,直接对采样不足的雷达数据进行傅立叶逆变换,会产生严重的混叠假影。因此,需要开发新的方法来处理这种采样不足的数据。

本文提出的 CoIR 正是基于这样的背景:一方面利用稀疏天线阵列设计减少硬件量,另一方面用隐式神经网络进行重构,提高成像质量。

3 方法

CoIR 的整体流程如下图所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8v0GZcM9-1692113119524)(<>)]

CoIR 包含两个关键模块:

  1. 稀疏天线阵列设计

  2. 基于隐式神经网络的重构(ComDecoder)

3.1 稀疏天线阵列设计

天线阵列的点扩散函数(PSF)是评价天线阵列成像质量的重要指标,其主瓣半功率宽度表示成像角分辨率,旁瓣水平表示成像模糊和混叠。

本文采用两步设计流程设计稀疏线性天线阵列:1) 设计4元接收天线最小冗余阵列;2) 在满足最大孔径约束的前提下,通过网格搜索找到发射天线阵列位置,使得合成天线阵列PSF的旁瓣水平最小化。

设计结果如下图,与全密集阵列相比,该稀疏天线阵列使用天线数量减少了5.5倍,同时保持了相近的主瓣宽度和较低的旁瓣水平。

在这里插入图片描述

3.2 基于隐式神经网络的成像重构

针对采样不足的雷达数据,CoIR提出使用隐式神经网络进行场景反射系数分布的重构。网络结构如图1所示:

具体步骤是:

  1. 以随机噪声作为输入,通过卷积解码器网络ComDecoder生成复数值极坐标图像;

  2. 对该图像进行2D FFT,合成完整的雷达数据;

  3. 保留稀疏天线位置对应的行,得到仿真稀疏雷达数据;

  4. 计算仿真数据与实际采集数据的损失,并通过反向传播更新ComDecoder的参数。

重复以上过程,使仿真数据逼近实际数据,从而重构出场景的反射系数分布。

这种analysis by synthesis的思想,正是隐式神经网络具有先验偏置的体现,可生成视觉上更自然的重构结果。

4 实验和结果

作者在模拟数据和实测数据上评估了CoIR和多种比较方法的重构性能。

4.1 模拟数据结果

下图给出了一个模拟场景下不同方法的重构结果。

在这里插入图片描述

可以看出,CoIR重构结果最佳,成功还原了场景中的关键结构,同时有效抑压了混叠假象。

作者还测试了不同噪声水平下的重构质量,结果如下图所示。可以看出,在各指标下,CoIR都优于其他方法,尤其在低SNR条件下保持了较高的重构质量。

在这里插入图片描述

4.2 实测数据结果

作者还在实际毫米波雷达数据上验证了各方法的性能。结果表明,在室外和室内两种场景下,CoIR都能很好地重构出场景的主要结构,并有效抑制混叠假象,优于其他无监督方法。

在这里插入图片描述
在这里插入图片描述

综上结果可以看出,CoIR利用隐式神经网络的先验性,实现了对采样不足雷达数据的高质量重构,并 verified in 实验室内外多种场景,证明了方法的泛化性和鲁棒性。

5 不足和未来展望

CoIR也存在一些限制:

  1. 前向模型假设场景静态,无法建模运动目标。

  2. 重构时间较长,约数十秒,难以实现实时。

  3. 目前仅针对线阵,扩展到面阵仍有挑战。

未来的一些可能的改进方向包括:

  • 更好地利用先验知识进行网络初始化,加速重构;

  • 扩展动态场景的雷达成像模型;

  • 探索在面阵或其他成像模式中的应用。

6 总结

本文提出了CoIR方法,实现了毫米波雷达的高精度稀疏成像。主要贡献包括稀疏天线阵列设计和基于压缩感知与隐式神经网络的重构方法。实验结果证明,该方法可以在使用较少天线的条件下重构出高质量的雷达图像,为降低成本的同时提高毫米波雷达的成像能力提供了一种新思路。CoIR也为隐式神经网络在其他成像领域中的应用提供了范例。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/91583.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

go的gin和gorm框架实现切换身份的接口

使用go的gin和gorm框架实现切换身份的接口&#xff0c;接收前端发送的JSON对象&#xff0c;查询数据库并更新&#xff0c;返回前端信息 接收前端发来的JSON对象&#xff0c;包含由openid和登陆状态组成的一个string和要切换的身份码int型 后端接收后判断要切换的身份是否低于该…

云原生网关API标准背景及发展现状

Gateway API是一个开源的API标准&#xff0c;源自Kubernetes SIG-NETWORK兴趣组。从出身角度讲&#xff0c;可谓根正苗红&#xff0c;自从开源以来备受关注&#xff0c;被寄予厚望。Gateway API旨在通过声明式、可扩展性和面向角色的接口来发展Kubernetes服务网络&#xff0c;并…

基于Selenium技术方案的爬虫入门实践

通过爬虫技术抓取网页&#xff0c;动态加载的数据或包含 JavaScript 的页面&#xff0c;需要使用一些特殊的技术和工具。以下是一些常用的技术方法&#xff1a; 使用浏览器模拟器&#xff1a;使用像 Selenium、PhantomJS 或其他类似工具可以模拟一个完整的浏览器环境&#xff0…

vue基础知识三:v-show和v-if有什么区别?使用场景分别是什么?

一、v-show与v-if的共同点 我们都知道在 vue 中 v-show 与 v-if 的作用效果是相同的(不含v-else)&#xff0c;都能控制元素在页面是否显示 在用法上也是相同的 <Model v-show"isShow" /> <Model v-if"isShow" />当表达式为true的时候&#…

9.3.2.2网络原理(传输层TCP)

TCP全部细节参考RFC标准文档 一.TCP特点: 有连接,可靠传输,面向字节流,全双工. 二.TCP数据报: 1.端口号是传输层的重要概念. 2.TCP的报头是变长的(UDP是固定的8字节),大小存在4位首部长度中,用4个bit位(0~15)表示长度单位是4字节.(TCP报头最大长度是60字节,前面20字节是固定…

[MAUI]在.NET MAUI中实现可拖拽排序列表

.NET MAUI 中提供了拖放(drag-drop)手势识别器&#xff0c;允许用户通过拖动手势来移动控件。在这篇文章中&#xff0c;我们将学习如何使用拖放手势识别器来实现可拖拽排序列表。在本例中&#xff0c;列表中显示不同大小的磁贴&#xff08;Tile&#xff09;并且可以拖拽排序。 …

【D3.js 01】

D3.js 01 说在前面1 概述2 配置Web环境3 HTML4 SVG5 DOM6 JS7 常用接口8 D3语法基础9 使用D3查询SVG10 使用D3设置SVG中属性11 修改整组属性12 使用D3添加与删除SVG元素13 数据读取 —— CSV数据14 D3.js的数值计算15 比例尺Scale - LinearScale - Band 16 引入坐标轴17 DATA-J…

13.3 目标检测和边界框

锚框的计算公式 假设原图的高为H,宽为W 详细公式推导 以同一个像素点为锚框&#xff0c;可以生成 (n个缩放 m个宽高比 -1 )个锚框 锚框的作用&#xff1a; 不用直接去预测真实框的四个坐标&#xff0c;而是&#xff1a; 1.先生成多个锚框。 2.预测每个锚框里是否含有要预测…

【11】Redis学习笔记 (微软windows版本)【Redis】

注意:官redis方不支持windows版本 只支持linux 此笔记是依托微软开发windows版本学习 一、前言 Redis简介&#xff1a; Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的内存数据结构存储系统&#xff0c;它也被称为数据结构服务器。Redis以键值对&am…

使用Python统计字符内容的占比

说明&#xff1a;如果有自己动手做过字符动画&#xff0c;会知道字符动画的“灵动性”核心在于使用的字符集。 简单来说&#xff0c;动画转为字符动画&#xff0c;原理是将动画转为灰阶图&#xff0c;灰度范围是0~255&#xff0c;然后将对应灰度的像素点转为对应比值的字符。这…

轻松抽象JavaScript

上一期说了伪随机方法中有一个问题&#xff0c;那就是如何得到0.1这个值 理论上是可以的&#xff0c;但是实践缺有很大区别 大海捞针可信吗&#xff1f;可行吗&#xff1f; 当然可行&#xff0c;也可行&#xff0c;用一块超级大磁铁&#xff0c;磁力拉满&#xff0c;而且还具…

【论文阅读】基于深度学习的时序预测——Non-stationary Transformers

系列文章链接 论文一&#xff1a;2020 Informer&#xff1a;长时序数据预测 论文二&#xff1a;2021 Autoformer&#xff1a;长序列数据预测 论文三&#xff1a;2022 FEDformer&#xff1a;长序列数据预测 论文四&#xff1a;2022 Non-Stationary Transformers&#xff1a;非平…

web-js

<html><head><title>基本语法</title></head><body><script>// window.alert("js");// document.write("js");// console.log("js");// function add(a,b){// return ab;// }var result functio…

商城-学习整理-高级-全文检索-ES(九)

目录 一、ES简介1、网址2、基本概念1、Index&#xff08;索引&#xff09;2、Type&#xff08;类型&#xff09;3、Document&#xff08;文档&#xff09;4、倒排索引机制4.1 正向索引和倒排索引4.2 正向索引4.3 倒排索引 3、相关软件及下载地址3.1 Kibana简介3.2 logstash简介…

【Go语言】go_session(超级详细)

目录 前言附件代码审计Index函数Admin函数Flask函数server.py问题 思路本地搭建环境admin绕过SaveUploadedFile方法payload 总结 前言 国赛初赛有一道题目go session&#xff0c;用go的Gin框架和pongo2模板引擎写的&#xff0c;是关于go的pongo2模板注入和flask的热加载&#…

分布式 - 服务器Nginx:一小时入门系列之代理缓冲与缓存

官方文档&#xff1a;https://nginx.org/en/docs/http/ngx_http_proxy_module.html 1. 代理缓冲 proxy_buffer 代理缓冲用于临时存储从后端服务器返回的响应数据。通过使用代理缓冲&#xff0c;Nginx可以在接收完整的响应后再将其发送给客户端&#xff0c;从而提高性能和效率…

智谷星图赵俊:让人才和区块链产业“双向奔赴”丨对话MVP

区块链产业需要什么样的人才&#xff1f;赵俊很有发言权。 赵俊是北京智谷星图科技有限公司的技术总监&#xff0c;也是FISCO BCOS官方认证讲师。他2017年接触区块链&#xff0c;随后选择人才培育领域深耕。“为区块链行业引进更多人才这件事很有价值&#xff0c;跟我的职业理…

【Java转Go】快速上手学习笔记(一)之环境安装篇

前言 前两天开始学习Go&#xff0c;需要写篇笔记记录总结一下。 Go它也是可以做web开发的&#xff0c;就像Java一样&#xff0c;做JavaWeb项目&#xff0c;Go也可以做GoWeb项目。当然Go的作用用处肯定不止这个&#xff0c;还有很多&#xff0c;只是因为我目前的话&#xff0c…

C进阶(2/7)前篇——指针进阶

前言&#xff1a;本文章讲解部分指针进阶内容。后续继续更新。 文章重点&#xff1a; 1. 字符指针 2. 数组指针 3. 指针数组 4. 数组传参和指针传参 目录 前言&#xff1a;本文章讲解部分指针进阶内容。后续继续更新。 指针初阶了解&#xff1a; 1.字符指针 1.1一道有关于字…

大模型基础:GPT家族与提示学习

大模型基础:GPT 家族与提示学习 从 GPT-1 到 GPT-3.5 GPT(Generative Pre-trained Transformer)是 Google 于2018年提出的一种基于 Transformer 的预训练语言模型。它标志着自然语言处理领域从 RNN 时代进入 Transformer 时代。GPT 的发展历史和技术特点如下: GPT-12018年6月…