STM32存储左右互搏 I2C总线FATS读写EEPROM ZD24C1MA
在较低容量存储领域,EEPROM是常用的存储介质,可以通过直接或者文件操作方式进行读写。不同容量的EEPROM的地址对应位数不同,在发送字节的格式上有所区别。EEPROM是非快速访问存储,因为EEPROM按页进行组织,在连续操作模式,当跨页时访问地址不是跳到下一页到开始,而是跳到当前页的首地址,因此跨页时要重新指定起始地址。而在控制端发送写操作I2C数据后还需要有等待EEPROM内部操作完成的时间才能进行下一次操作。ZD24C1MA是1M bit / 128K Byte容量的EEPROM,ZD24C1MA的管脚定义为:
这里介绍STM32 通过文件系统FATS访问EEPROM ZD24C1MA的例程。采用STM32CUBEIDE开发平台,以STM32F401CCU6芯片为例,通过STM32 I2C硬件电路实现读写操作,通过UART串口进行控制。
STM32工程配置
首先建立基本工程并设置时钟:
配置硬件I2C接口,
配置UART1作为通讯串口:
对FATS文件系统进行配置:
保存并生成初始工程代码:
STM32工程代码
代码里用到的微秒延时函数参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化
ZD24C1MA的设备默认访问地址为0xA0, ZD24C1MA的存储单元地址访问略为特殊,17位地址分为两部分,最高位的1位放置于I2C设备默认访问地址的第1位,I2C设备默认访问地址第0位仍然为读写控制位,由于采用硬件I2C控制,库函数自行通过识别调用的是发送还是接收函数对第0位进行发送前设置,因此,不管是调用库函数的I2C写操作还是读操作,提供的地址相同。17位地址的低16位通过在发送设备地址后的作为跟随的第一,二个字节发送。
建立ZD24C1MA.h库头文件
#ifndef INC_ZD24C1MA_H_
#define INC_ZD24C1MA_H_#include "main.h"void PY_Delay_us_t(uint32_t Delay);
void ZD24C1MA_Read(uint32_t addr, uint8_t * data, uint32_t len);
void ZD24C1MA_Write(uint32_t addr, uint8_t * data, uint32_t len);#endif
建立ZD24C1MA.c库源文件:
#include <string.h>
#include <ZD24C1MA.h>#define Page_Size 256
#define Delay_Param 5
extern I2C_HandleTypeDef hi2c1;
extern uint8_t ZD24C1MA_Default_I2C_Addr ;void ZD24C1MA_Read(uint32_t addr, uint8_t * data, uint32_t len)
{uint8_t ZD24C1MA_I2C_Addr;ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C addressuint8_t RA[2];RA[0] = (addr & 0xFF00)>>8; //high 8-bit access address placed into I2C first dataRA[1] =addr & 0x00FF; //low 8-bit access address placed into I2C first dataHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, &RA[0], 2, 2700); //Write address for readHAL_I2C_Master_Receive(&hi2c1, ZD24C1MA_I2C_Addr, data, len, 2700); //Read data}void ZD24C1MA_Write(uint32_t addr, uint8_t * data, uint32_t len)
{uint8_t ZD24C1MA_I2C_Addr;uint32_t addr_page = addr/Page_Size;uint32_t addr_index = addr%Page_Size;uint32_t TLEN;uint8_t TAD[Page_Size+2];uint32_t i=0;if(len<=(Page_Size-addr_index)){TAD[0] = (addr & 0xFF00) >> 8;TAD[1] = addr & 0x00FF ;memcpy(TAD+2, data, len);ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C addressHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, len+2, 2700); //Write dataPY_Delay_us_t(Delay_Param*1000);}else{TAD[0] = (addr & 0xFF00) >> 8;TAD[1] = addr & 0x00FF ;memcpy(TAD+2, data, (Page_Size-addr_index));ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C addressHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, (Page_Size-addr_index)+2, 2700); //Write dataPY_Delay_us_t(Delay_Param*1000);TLEN = (len-(Page_Size-addr_index));while( TLEN >= Page_Size ){addr_page += 1;TAD[0] = ((addr_page*Page_Size) & 0xFF00 ) >> 8;TAD[1] = (addr_page*Page_Size) & 0x00FF ;memcpy(TAD+2, data + (Page_Size-addr_index) + i*Page_Size, Page_Size);ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | (((addr_page*Page_Size)>>16)<<1); //highest 1-bit access address placed into I2C addressHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, Page_Size+2, 2700); //Write dataHAL_Delay(Delay_Param);i++;TLEN -= Page_Size;PY_Delay_us_t(Delay_Param*1000);}if(TLEN>0){addr_page += 1;TAD[0] = ((addr_page*Page_Size) & 0xFF00 ) >> 8;TAD[1] = (addr_page*Page_Size) & 0x00FF ;memcpy(TAD+2, data + (Page_Size-addr_index) + i*Page_Size, TLEN);ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | (((addr_page*Page_Size)>>16)<<1); //highest 1-bit access address placed into I2C addressHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, TLEN+2, 2700); //Write dataPY_Delay_us_t(Delay_Param*1000);}}}
对ffconf.h添加包含信息:
#include "main.h"
#include "stm32f4xx_hal.h"
#include "ZD24C1MA.h"
修改user_diskio.c,对文件操作函数与底层I2C读写提供连接:
/* USER CODE BEGIN Header */
/********************************************************************************* @file user_diskio.c* @brief This file includes a diskio driver skeleton to be completed by the user.******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************//* USER CODE END Header */#ifdef USE_OBSOLETE_USER_CODE_SECTION_0
/** Warning: the user section 0 is no more in use (starting from CubeMx version 4.16.0)* To be suppressed in the future.* Kept to ensure backward compatibility with previous CubeMx versions when* migrating projects.* User code previously added there should be copied in the new user sections before* the section contents can be deleted.*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
#endif/* USER CODE BEGIN DECL *//* Includes ------------------------------------------------------------------*/
#include <string.h>
#include "ff_gen_drv.h"/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*//* Private variables ---------------------------------------------------------*/
/* Disk status */
static volatile DSTATUS Stat = STA_NOINIT;/* USER CODE END DECL *//* Private function prototypes -----------------------------------------------*/
DSTATUS USER_initialize (BYTE pdrv);
DSTATUS USER_status (BYTE pdrv);
DRESULT USER_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count);
#if _USE_WRITE == 1DRESULT USER_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count);
#endif /* _USE_WRITE == 1 */
#if _USE_IOCTL == 1DRESULT USER_ioctl (BYTE pdrv, BYTE cmd, void *buff);
#endif /* _USE_IOCTL == 1 */Diskio_drvTypeDef USER_Driver =
{USER_initialize,USER_status,USER_read,
#if _USE_WRITEUSER_write,
#endif /* _USE_WRITE == 1 */
#if _USE_IOCTL == 1USER_ioctl,
#endif /* _USE_IOCTL == 1 */
};/* Private functions ---------------------------------------------------------*//*** @brief Initializes a Drive* @param pdrv: Physical drive number (0..)* @retval DSTATUS: Operation status*/
DSTATUS USER_initialize (BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{/* USER CODE BEGIN INIT *//**************************SELF DEFINITION PART************/extern uint8_t ZD24C1MA_Default_I2C_Addr ;ZD24C1MA_Default_I2C_Addr = 0xA0; //Pin A2=A1=0return RES_OK;/**********************************************************//*Stat = STA_NOINIT;return Stat;*//* USER CODE END INIT */
}/*** @brief Gets Disk Status* @param pdrv: Physical drive number (0..)* @retval DSTATUS: Operation status*/
DSTATUS USER_status (BYTE pdrv /* Physical drive number to identify the drive */
)
{/* USER CODE BEGIN STATUS *//**************************SELF DEFINITION PART************/switch (pdrv){case 0 :return RES_OK;case 1 :return RES_OK;case 2 :return RES_OK;default:return STA_NOINIT;}/**********************************************************//*Stat = STA_NOINIT;return Stat;*//* USER CODE END STATUS */
}/*** @brief Reads Sector(s)* @param pdrv: Physical drive number (0..)* @param *buff: Data buffer to store read data* @param sector: Sector address (LBA)* @param count: Number of sectors to read (1..128)* @retval DRESULT: Operation result*/
DRESULT USER_read (BYTE pdrv, /* Physical drive nmuber to identify the drive */BYTE *buff, /* Data buffer to store read data */DWORD sector, /* Sector address in LBA */UINT count /* Number of sectors to read */
)
{/* USER CODE BEGIN READ *//**************************SELF DEFINITION PART************/uint16_t len;if( !count ){return RES_PARERR; /*count status*/}switch (pdrv){case 0:sector <<= 9; //Convert sector number to byte addresslen = count*512;ZD24C1MA_Read(sector, buff, len);return RES_OK;default:return RES_ERROR;}/**********************************************************//*return RES_OK;*//* USER CODE END READ */
}/*** @brief Writes Sector(s)* @param pdrv: Physical drive number (0..)* @param *buff: Data to be written* @param sector: Sector address (LBA)* @param count: Number of sectors to write (1..128)* @retval DRESULT: Operation result*/
#if _USE_WRITE == 1
DRESULT USER_write (BYTE pdrv, /* Physical drive nmuber to identify the drive */const BYTE *buff, /* Data to be written */DWORD sector, /* Sector address in LBA */UINT count /* Number of sectors to write */
)
{/* USER CODE BEGIN WRITE *//* USER CODE HERE *//**************************SELF DEFINITION PART************/uint16_t len;if( !count ){return RES_PARERR; /*count status*/}switch (pdrv){case 0:sector <<= 9; //Convert sector number to byte addresslen = count*512;ZD24C1MA_Write(sector, (uint8_t *)buff,len);return RES_OK;default:return RES_ERROR;}/*********************************************************//*return RES_OK;*//* USER CODE END WRITE */
}
#endif /* _USE_WRITE == 1 *//*** @brief I/O control operation* @param pdrv: Physical drive number (0..)* @param cmd: Control code* @param *buff: Buffer to send/receive control data* @retval DRESULT: Operation result*/
#if _USE_IOCTL == 1
DRESULT USER_ioctl (BYTE pdrv, /* Physical drive nmuber (0..) */BYTE cmd, /* Control code */void *buff /* Buffer to send/receive control data */
)
{/* USER CODE BEGIN IOCTL *//**************************SELF DEFINITION PART************/#define user_sector_byte_size 512DRESULT res;switch(cmd){case CTRL_SYNC:res=RES_OK;break;case GET_SECTOR_SIZE:*(WORD*)buff = user_sector_byte_size;res = RES_OK;break;case GET_BLOCK_SIZE:*(WORD*)buff = 4096/user_sector_byte_size;res = RES_OK;break;case GET_SECTOR_COUNT:*(DWORD*)buff = (128*1024/512);res = RES_OK;break;default:res = RES_PARERR;break;}return res;/**********************************************************//*DRESULT res = RES_ERROR;return res;*//* USER CODE END IOCTL */
}
#endif /* _USE_IOCTL == 1 */
然后在main.c里根据串口输入命令(16进制单字节)实现如下功能:
0x01. 读取EEPROM ID
0x02. 装载FATS文件系统
0x03: 创建/打开文件并从头位置写入数据
0x04: 打开文件并从头位置读入数据
0x05: 创建/打开文件并从特定位置写入数据
0x06: 打开文件并从特定位置读入数据
完整的代码实现如下:
/* USER CODE BEGIN Header */
/********************************************************************************* @file : main.c* @brief : Main program body******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
#include "string.h"
#include "ZD24C1MA.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{__IO uint32_t firstms, secondms;__IO uint32_t counter = 0;firstms = HAL_GetTick()+1;secondms = firstms+1;while(uwTick!=firstms) ;while(uwTick!=secondms) counter++;usDelayBase = ((float)counter)/1000;
}void PY_Delay_us_t(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);delayReg = 0;while(delayReg!=usNum) delayReg++;
}void PY_usDelayOptimize(void)
{__IO uint32_t firstms, secondms;__IO float coe = 1.0;firstms = HAL_GetTick();PY_Delay_us_t(1000000) ;secondms = HAL_GetTick();coe = ((float)1000)/(secondms-firstms);usDelayBase = coe*usDelayBase;
}void PY_Delay_us(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t msNum = Delay/1000;__IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);if(msNum>0) HAL_Delay(msNum);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
DMA_HandleTypeDef hdma_i2c1_tx;UART_HandleTypeDef huart1;/* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0; //for status control
uint8_t URX;uint8_t ZD24C1MA_Default_I2C_Addr = 0xA0; //Pin A2=A1=0
uint32_t ZD24C1MA_Access_Addr = 0; //EEPROM ZD24C1MA access address (17-bit)uint8_t EEPROM_mount_status = 0; //EEPROM fats mount status indication (0: unmount; 1: mount)
uint8_t FATS_Buff[_MAX_SS]; //Buffer for f_mkfs() operationFRESULT retEEPROM;
FIL file;
FATFS *fs;UINT bytesread;
UINT byteswritten;
uint8_t rBuffer[20]; //Buffer for read
uint8_t WBuffer[20] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write#define user_sector_byte_size 512
uint8_t eeprombuffer[user_sector_byte_size];extern char USERPath[4];char * console;
/* USER CODE END 0 *//*** @brief The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 */EEPROM_mount_status = 0;uint32_t EEPROM_Read_Size;extern char USERPath[4];char * dpath = "0:"; //Disk Pathfor(uint8_t i=0; i<4; i++){USERPath[i] = *(dpath+i);}const TCHAR* filepath = "0:test.txt";char cchar[256];console = cchar;/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_DMA_Init();MX_I2C1_Init();MX_USART1_UART_Init();MX_FATFS_Init();/* USER CODE BEGIN 2 */PY_usDelayTest();PY_usDelayOptimize();HAL_UART_Receive_IT(&huart1, &URX, 1);/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(cmd==1) //Read ID{cmd = 0;printf("EEPROM ID=ZD24C1MAT\r\n\r\n");}else if(cmd==2) //EEPROM File System Mount{cmd = 0;retEEPROM=f_mount(&USERFatFS, (TCHAR const*)USERPath, 1);if (retEEPROM != FR_OK){printf("File system mount failure: %d\r\n", retEEPROM);if(retEEPROM==FR_NO_FILESYSTEM){printf("No file system. Now to format......\r\n");retEEPROM = f_mkfs((TCHAR const*)USERPath, FM_FAT, 1024, FATS_Buff, sizeof(FATS_Buff)); //EEPROM formattingif(retEEPROM == FR_OK){printf("EEPROM formatting success!\r\n");}else{printf("EEPROM formatting failure!\r\n");}}}else{EEPROM_mount_status = 1;printf("File system mount success\r\n");}}else if(cmd==3) //File creation and write{cmd = 0;if(EEPROM_mount_status==0){printf( "\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);}else{retEEPROM = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE ); //Open or create fileif(retEEPROM == FR_OK){printf( "\r\nFile open or creation successful\r\n");retEEPROM = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten); //Write dataif(retEEPROM == FR_OK){printf("\r\nFile write successful\r\n");}else{printf("\r\nFile write error: %d\r\n",retEEPROM);}f_close(&file); //Close file}else{printf("\r\nFile open or creation error %d\r\n",retEEPROM);}}}else if(cmd==4) //File read{cmd = 0;if(EEPROM_mount_status==0){printf("\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);}else{retEEPROM = f_open( &file, filepath, FA_OPEN_EXISTING | FA_READ); //Open fileif(retEEPROM == FR_OK){printf("\r\nFile open successful\r\n");retEEPROM = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread); //Read dataif(retEEPROM == FR_OK){printf("\r\nFile read successful\r\n");PY_Delay_us_t(200000);EEPROM_Read_Size = sizeof(rBuffer);for(uint16_t i = 0;i < EEPROM_Read_Size;i++){printf("%d ", rBuffer[i]);}printf("\r\n");}else{printf("\r\nFile read error: %d\r\n", retEEPROM);}f_close(&file); //Close file}else{printf("\r\nFile open error: %d\r\n", retEEPROM);}}}else if(cmd==5) //File locating write{cmd = 0;if(EEPROM_mount_status==0){printf("\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);}else{retEEPROM = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE); //Open or create fileif(retEEPROM == FR_OK){printf("\r\nFile open or creation successful\r\n");retEEPROM=f_lseek( &file, f_tell(&file) + sizeof(WBuffer) ); //move file operation pointer, f_tell(&file) gets file head locatingif(retEEPROM == FR_OK){retEEPROM = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten);if(retEEPROM == FR_OK){printf("\r\nFile locating write successful\r\n");}else{printf("\r\nFile locating write error: %d\r\n", retEEPROM);}}else{printf("\r\nFile pointer error: %d\r\n",retEEPROM);}f_close(&file); //Close file}else{printf("\r\nFile open or creation error %d\r\n",retEEPROM);}}}else if(cmd==6) //File locating read{cmd = 0;if(EEPROM_mount_status==0){printf("\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);}else{retEEPROM = f_open(&file, filepath, FA_OPEN_EXISTING | FA_READ); //Open fileif(retEEPROM == FR_OK){printf("\r\nFile open successful\r\n");retEEPROM = f_lseek(&file,f_tell(&file)+ sizeof(WBuffer)/2); //move file operation pointer, f_tell(&file) gets file head locatingif(retEEPROM == FR_OK){retEEPROM = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread);if(retEEPROM == FR_OK){printf("\r\nFile locating read successful\r\n");PY_Delay_us_t(200000);EEPROM_Read_Size = sizeof(rBuffer);for(uint16_t i = 0;i < EEPROM_Read_Size;i++){printf("%d ",rBuffer[i]);}printf("\r\n");}else{printf("\r\nFile locating read error: %d\r\n",retEEPROM);}}else{printf("\r\nFile pointer error: %d\r\n",retEEPROM);}f_close(&file);}else{printf("\r\nFile open error: %d\r\n",retEEPROM);}}}PY_Delay_us_t(100);/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 336;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;RCC_OscInitStruct.PLL.PLLQ = 7;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/*** @brief I2C1 Initialization Function* @param None* @retval None*/
static void MX_I2C1_Init(void)
{/* USER CODE BEGIN I2C1_Init 0 *//* USER CODE END I2C1_Init 0 *//* USER CODE BEGIN I2C1_Init 1 *//* USER CODE END I2C1_Init 1 */hi2c1.Instance = I2C1;hi2c1.Init.ClockSpeed = 400000;hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;hi2c1.Init.OwnAddress1 = 0;hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;hi2c1.Init.OwnAddress2 = 0;hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;if (HAL_I2C_Init(&hi2c1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN I2C1_Init 2 *//* USER CODE END I2C1_Init 2 */}/*** @brief USART1 Initialization Function* @param None* @retval None*/
static void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}/*** Enable DMA controller clock*/
static void MX_DMA_Init(void)
{/* DMA controller clock enable */__HAL_RCC_DMA1_CLK_ENABLE();/* DMA interrupt init *//* DMA1_Stream6_IRQn interrupt configuration */HAL_NVIC_SetPriority(DMA1_Stream6_IRQn, 0, 0);HAL_NVIC_EnableIRQ(DMA1_Stream6_IRQn);}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 *//* GPIO Ports Clock Enable */__HAL_RCC_GPIOH_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();__HAL_RCC_GPIOB_CLK_ENABLE();/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{if(huart==&huart1){cmd = URX;HAL_UART_Receive_IT(&huart1, &URX, 1);}}
/* USER CODE END 4 *//*** @brief This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef USE_FULL_ASSERT
/*** @brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* @param file: pointer to the source file name* @param line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */#endif /* USE_FULL_ASSERT */
STM32例程测试
串口指令0x01测试效果如下:
串口指令0x02测试效果如下:
串口指令0x03测试效果如下:
串口指令0x04测试效果如下:
串口指令0x05测试效果如下:
串口指令0x06测试效果如下:
STM32例程下载
STM32F401CCU6 I2C总线FATS读写EEPROM ZD24C1MA例程下载
–End–