[机器学习]特征工程:特征降维

特征降维

1、简介

特征降维是指通过减少特征空间中的维度,将高维数据映射到一个低维子空间的过程

在机器学习和数据分析中,特征降维可以帮助减少数据的复杂性、降低计算成本、提高模型性能和可解释性,以及解决维度灾难等问题。特征降维通常分为两种主要方法:特征选择和特征提取。

  1. 特征选择(Feature Selection)特征选择是指从原始特征中选择一部分最具有代表性和重要性的特征子集,而忽略其他特征。这样可以减少特征的数量,从而降低了维度。特征选择方法可以基于统计检验、信息增益、模型权重等指标来评估特征的重要性,然后选择排名靠前的特征。
  2. 特征提取(Feature Extraction)特征提取是通过数学变换将原始特征映射到一个新的低维子空间,从而保留数据中的关键信息。常见的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、独立成分分析(ICA)等。这些方法通过线性或非线性的映射,将高维数据转化为低维表示,使得新特征具有更强的表达能力。

特征降维的优点包括:

  • 减少维度灾难:维度灾难是指在高维空间中,数据稀疏性增加,距离度量失效等问题。特征降维可以减轻这些问题,使得数据更易处理和分析。
  • 减少计算成本:高维数据的计算成本较高,特征降维可以降低计算复杂性,提高算法效率。
  • 提高模型性能:在一些情况下,特征降维可以提高模型的性能,减少过拟合,提高泛化能力。
  • 可视化和解释性:将数据映射到低维空间可以更容易地进行可视化和解释,帮助理解数据中的模式和关系。

特征降维的选择取决于数据的性质、问题的需求和模型的要求。不同的降维方法适用于不同的情况,需要根据具体问题来进行选择和应用。

2、降维

降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程

降低随机变量的个数:

相关特征(correlated feature):相对湿度与降雨量之间的相关

正是因为在进行训练的时候,我们都是使用特征进行学习。如果特征本身存在问题或者特征之间相关性较强,对于算法学习预测会影响较大

降维的两种方式:特征选择和主成分分析(可以理解一种特征提取的方式)

3、特征选择

3.1、简述

定义:数据中包含冗余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。

特征选择是指从原始数据的特征集合中选择出最具有代表性和重要性的一部分特征,以便用于构建模型、分析数据或解决问题。

特征选择的目标是减少特征的数量,同时保留数据中最具信息量的部分,从而降低计算成本、提高模型性能、加速训练过程和提高模型的可解释性。

特征选择的主要动机是:

  1. 降低维度:高维数据集中的特征数量可能非常庞大,导致计算和存储开销增加,降低了算法的效率。
  2. 减少过拟合:过多的特征可能导致模型过于复杂,容易在训练集上表现良好,但在新数据上表现较差(过拟合)。
  3. 提高模型性能:一些特征可能对模型性能没有贡献,甚至可能带来噪声。通过选择重要的特征,可以提高模型的性能。
  4. 改善解释性:使用更少的特征可以使模型更容易理解和解释。

特征选择方法可以分为三大类:

  1. 过滤法(Filter Methods):通过在特征选择之前对特征进行评估和排序,选择与目标变量相关性较高的特征。常用的过滤方法包括方差选择、相关系数、互信息等。
  2. 包装法(Wrapper Methods):将特征选择视为一个优化问题,根据模型的性能来选择特征。常见的包装方法包括递归特征消除(Recursive Feature Elimination, RFE)和前向选择(Forward Selection)等。
  3. 嵌入法(Embedded Methods):在模型训练过程中进行特征选择,通过优化模型的性能来选择特征。例如,决策树和正则化线性模型可以在训练过程中剪枝或约束特征的权重。

特征选择方法的选择取决于数据的性质、问题的需求和模型的要求。不同的方法适用于不同的情况,需要根据具体问题来选择和应用。特征选择是数据预处理的重要一环,能够为构建更准确、高效和可解释的机器学习模型奠定基础。

3.2、两种方法

Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联

方差选择法:低方差特征过滤

相关系数

Embedded (嵌入式):算法自动选择特征(特征与目标值之间的关联)

决策树:信息熵、信息增益

正则化:L1、L2

深度学习:卷积等

需要使用的模块:sklearn.feature_selection

3.3、过滤式

3.3.1、低方差特征过滤

删除低方差的一些特征,前面讲过方差的意义。再结合方差的大小来考虑这个方式的角度。

特征方差小:某个特征大多样本的值比较相近

特征方差大:某个特征很多样本的值都有差别

API:

sklearn.feature_selection.VarianceThreshold(threshold = 0.0)

删除所有低方差特征

Variance.fit_transform(X)

X:numpy array格式的数据[n_samples,n_features]

返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。

案例实践:

下面进行数据计算,我们对某些股票的指标特征之间进行一个筛选,需要的数据保存在factor_returns.csv文件。

需要除去'index,'date','return'列不考虑(这些类型不匹配,也不是所需要指标)

所以需要的特征如下:pe_ratio,pb_ratio,market_cap,return_on_asset_net_profit,du_return_on_equity,ev,earnings_per_share,revenue,total_expense

下面进行分析:

1、初始化VarianceThreshold,指定阀值方差

2、调用fit_transform

# -*- coding: utf-8 -*-
# @Author:︶ㄣ释然
# @Time: 2023/8/16 10:01
import pandas as pd
from sklearn.feature_selection import VarianceThreshold  # 低方差特征过滤'''
sklearn.feature_selection.VarianceThreshold(threshold = 0.0)删除所有低方差特征Variance.fit_transform(X)X:numpy array格式的数据[n_samples,n_features]返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。
'''
def variance_demo():"""删除低方差特征——特征选择:return: None"""data = pd.read_csv("data/factor_returns.csv")print(data)# 1、实例化一个转换器类transfer = VarianceThreshold(threshold=1)# 2、调用fit_transformdata = transfer.fit_transform(data.iloc[:, 1:10])print("删除低方差特征的结果:\n", data)print("形状:\n", data.shape)if __name__ == '__main__':# 设置 Pandas 输出选项以展示所有行和列的内容pd.set_option('display.max_columns', None)variance_demo()

结果如下:

3.3.2、相关系数

皮尔逊相关系数(Pearson Correlation Coefficient):反映变量之间相关关系密切程度的统计指标

皮尔逊相关系数(Pearson Correlation Coefficient),也称为皮尔逊相关系数或皮尔逊相关系数,是一种用于衡量两个连续变量之间线性关系强度和方向的统计量。它衡量了两个变量之间的线性相关程度。

相关系数的值介于–1与+1之间,即–1≤ r ≤+1。其性质如下:

  • 当r>0时,表示两变量正相关,r<0时,两变量为负相关
  • 当|r|=1时,表示两变量为完全相关,当r=0时,表示两变量间无相关关系
  • 当0<|r|<1时,表示两变量存在一定程度的相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱
  • 一般可按三级划分:|r|<0.4为低度相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为高度线性相关

公式:

 

参数如下:

n:观测值的数量。

∑:求和符号,表示对所有观测值求和。

x 和 y:分别表示两个变量的观测值。

API:

from scipy.stats import pearsonr

x : (N,) array_like

y : (N,) array_like Returns: (Pearson’s correlation coefficient, p-value)

案例:股票的财务指标相关性计算

我们刚才的股票的这些指标进行相关性计算, 假设我们以factor = ['pe_ratio','pb_ratio','market_cap','return_on_asset_net_profit','du_return_on_equity','ev','earnings_per_share','revenue','total_expense']这些特征当中的两两进行计算,得出相关性高的一些特征。

分析:两两特征之间进行相关性计算

import pandas as pd
from scipy.stats import pearsonr  # 皮尔逊相关系数'''
from scipy.stats import pearsonrx : (N,) array_likey : (N,) array_like Returns: (Pearson’s correlation coefficient, p-value)
'''
def pearsonr_demo():"""相关系数计算"""data = pd.read_csv("data/factor_returns.csv")factor = ['pe_ratio', 'pb_ratio', 'market_cap', 'return_on_asset_net_profit', 'du_return_on_equity', 'ev','earnings_per_share', 'revenue', 'total_expense']for i in range(len(factor)):for j in range(i, len(factor) - 1):print("指标%s与指标%s之间的相关性大小为%f" % (factor[i], factor[j + 1], pearsonr(data[factor[i]], data[factor[j + 1]])[0]))if __name__ == '__main__':# 设置 Pandas 输出选项以展示所有行和列的内容pd.set_option('display.max_columns', None)pearsonr_demo()

结果:

从中可以得出:

指标revenue与指标total_expense之间的相关性大小为0.995845

指标return_on_asset_net_profit与指标du_return_on_equity之间的相关性大小为0.818697

画图:

这两对指标之间的相关性较大,可以做之后的处理,比如合成这两个指标。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/93192.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中远麒麟堡垒机 SQL注入漏洞复现

0x01 产品简介 中远麒麟依托自身强大的研发能力,丰富的行业经验&#xff0c;自主研发了新一代软硬件一体化统一安全运维平台一-iAudit 统一安全运维平台。该产品支持对企业运维人员在运维过程中进行统一身份认证、统一授权、统一审计、统一监控&#xff0c;消除了传统运维过程中…

ORCA优化器浅析——CDXLScalar Base class for representing scalar DXL operators

CDXLScalar类作为Base class for representing scalar DXL operators&#xff0c;该类只是定义一些接口&#xff0c;其中实现了GetDXLOperatorType函数&#xff0c;其返回EdxloptypeScalar&#xff0c;代表scalar DXL operators。 class CDXLScalar : public CDXLOperator{ pr…

nodejs+vue+elementui膳食营养健康网站 4d8g9

前端nodejsvueelementui, 后台主要功能是&#xff1a;首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;膳食类型管理&#xff0c;膳食信息管理&#xff0c;膳食食材管理&#xff0c;食材类型管理&#xff0c;我的收藏管理&#xff0c;网站管理&#xff0c;订单管理等…

2023机械制造ERP管理软件哪个好?亿发现代化ERP系统建设,免费更新

机械制造行业市场大&#xff0c;不但需要满足传统行业的需求&#xff0c;还有新能源汽车、智能家居、装备制造等新兴领域的需求。而随着人工智能、物联网、大数据等科技的应用&#xff0c;机械制造业正逐步向智能化、自动化方向发展&#xff0c;增强生产效率和产品质量。在机械…

PHP使用phpmailer及SMTP服务实现邮件发送

博客升级中&#xff0c;把之前没有想到的功能一点点的完善。 这篇日志记录一下&#xff0c;使用phpmailer实现邮件发送的这样一个操作。 博客偶尔会有留言和评论&#xff0c;我也会及时回复&#xff0c;但是有一个问题&#xff0c;我回复了&#xff0c;给我留言的人如果不再次…

大模型是什么?大模型可以在哪些场景应用落地?

大模型是什么&#xff1f;大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域&#xff0c;大模型通常是指具有数百万到数十亿参数的神经网络模型。 大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域&#xff0c;大模型通常是…

iphone拷贝照片中间带E自动去重软件,以及java程序如何打包成jar和exe

文章目录 一、前提二、问题描述三、原始处理方式四、程序处理4.1 java程序如何打包exe4.1.1 首先打包jar4.1.2 开始生成exe4.1.3 软件使用方式 4.2 更换图标4.2.1 更换swing的打包jar图标4.2.2 更换exe图标 4.3 如何使生成的exe在没有java环境的电脑上运行4.3.1 Inno Setup打包…

pytorch安装VAE项目详解

安装VAE项目 一、 基本环境二、代码来源三、搭建conda环境四、下载数据集五、启动项目六、其他相关问题 一、 基本环境 工具版本号OSwin 11pycharm2020.1GPU3050 二、代码来源 github地址为&#xff1a; https://github.com/AntixK/PyTorch-VAE/blob/8700d245a9735640dda458d…

微信小程序前后端开发快速入门(完结篇)

这篇是微信小程序前后端快速入门完结篇了&#xff0c;今天利用之前学习过的所有知识做一个新的项目「群登记助手v1.0」小程序。 整体技术架构&#xff1a;小程序原生前端小程序云开发。 经历了前面教程的学习&#xff0c;大家有了一定的基础&#xff0c;所以本次分享重心主要是…

气象监测站:用科技感知气象变化

气象监测站是利用科学技术感知当地小气候变化情况的气象观测仪器&#xff0c;可用于农业、林业、养殖业、畜牧业、环境保护、工业等多个领域&#xff0c;提高对环境数据的利用率&#xff0c;促进产业效能不断提升。 气象监测站主要由气象传感器、数据传输系统、电源系统、支架…

CKZF-D60170、CKZF-D70190、CKZF-D80210单向离合器

CKZF-C30100、CKZF-C35110、CKZF-C40125、CKZF-C45130、CKZF-C50150、CKZF-C55160、CKZF-C60170、CKZF-C70190、CKZF-C80210、CKZF-C90230、CKZF-C100270、CKZF-C130310、CKZF-B30100、CKZF-B35110、CKZF-B40125、CKZF-B45130、CKZF-B50150、CKZF-B55160、CKZF-B60170、CKZF-B7…

深入学习前端开发,掌握HTML、CSS、JavaScript等技术

课程链接&#xff1a; 链接: https://pan.baidu.com/s/1WECwJ4T8UQfs2FyjUMbxig?pwdi654 提取码: i654 复制这段内容后打开百度网盘手机App&#xff0c;操作更方便哦 --来自百度网盘超级会员v4的分享 课程介绍&#xff1a; 第1周&#xff1a;HTML5基础语法与标签 &#x1f…

【数据结构】二叉树

完全二叉树 是指所有结点度数小于等于2的树 所以这种情况也是&#xff1a; 几条性质 一个具有n个结点的完全二叉树的深度为&#xff1a; log ⁡ 2 ( n 1 ) 的结果向上取整。 \\\log_{2}(n1) \ \ 的结果向上取整。 log2​(n1) 的结果向上取整。设度为0的结点个数是n0&#…

【数据结构】实现顺序表

目录 一.介绍顺序表二.实现顺序表1.创建多文件2.顺序表的存储方式3.函数的声明4.初始化顺序表5.清理顺序表6.打印顺序表7.扩容8.尾插8.尾删9.头插10.头删11.查找12.修改13.在pos位置插入13.在pos位置删除 三.全部代码1.SeqList.h2.SeqList.c3.Test.c 一.介绍顺序表 顺序表是用…

【机器学习】sklearn数据集的使用,数据集的获取和划分

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 sklearn数据集 二、安装sklearn二、获取数据集三、…

RFID如何在汽车混流生产中进行车辆跟踪?

在汽车混流生产中&#xff0c;RFID技术可以对每个车辆进行唯一标识&#xff0c;从而实现车辆生产全程跟踪。实时确定车辆的位置、状态和生产过程&#xff0c;生产管理系统就能够对生产流程进行实时监控和管理&#xff0c;及时发现和解决问题&#xff0c;提高生产效率和质量。 焊…

gulimall-缓存-缓存使用

文章目录 前言一、本地缓存与分布式缓存1.1 使用缓存1.2 本地缓存1.3 本地模式在分布式下的问题1.4 分布式缓存 二、整合redis测试2.1 引入依赖2.2 配置信息2.3 测试 三、改造三级分类业务3.1 代码改造 四、高并发下缓存失效问题4.1 缓存穿透4.2 缓存雪崩4.3 缓存击穿 五、分布…

ZooKeeper的应用场景(命名服务、分布式协调通知)

3 命名服务 命名服务(NameService)也是分布式系统中比较常见的一类场景&#xff0c;在《Java网络高级编程》一书中提到&#xff0c;命名服务是分布式系统最基本的公共服务之一。在分布式系统中&#xff0c;被命名的实体通常可以是集群中的机器、提供的服务地址或远程对象等一这…

基于LVQ神经网络的人脸朝向识别

1案例背景 1.1人脸识别概述 人脸识别作为一个复杂的模式识别问题,近年来受到了广泛的关注,识别领域的各种方法在这个问题上各显所长,而且发展出了许多新方法,大大丰富和拓宽了模式识别的方向。人脸识别、检测,跟踪、特征定位等技术近年来一直是研究的热点。人脸识别是人脸应用…

W5500-EVB-PICO 做UDP Server进行数据回环测试(七)

前言 前面我们用W5500-EVB-PICO 开发板在TCP Client和TCP Server模式下&#xff0c;分别进行数据回环测试&#xff0c;本章我们将用开发板在UDP Server模式下进行数据回环测试。 UDP是什么&#xff1f;什么是UDP Server&#xff1f;能干什么&#xff1f; UDP (User Dataqram P…