【100天精通python】Day38:GUI界面编程_PyQT从入门到实战(中)

目录

  专栏导读 

4 数据库操作

4.1 连接数据库

4.2 执行 SQL 查询和更新:

4.3 使用模型和视图显示数据

 5 多线程编程

5.1 多线程编程的概念和优势

5.2 在 PyQt 中使用多线程

5.3 处理多线程间的同步和通信问题

5.3.1 信号槽机制

5.3.2 线程安全的数据访问

 QMutex 和 QMutexLocker


  专栏导读 

专栏订阅地址:https://blog.csdn.net/qq_35831906/category_12375510.html


4 数据库操作

      

        PyQt6中的数据库操作主要涉及到Qt的SQL模块,该模块提供了用于连接和管理数据库的功能。下面是一个关于PyQt6数据库操作的概述:

  1. 数据库连接: 使用QSqlDatabase类建立与数据库的连接。可以连接到各种数据库引擎,例如SQLite、MySQL、PostgreSQL等。连接需要指定数据库类型、主机、用户名、密码等信息。

  2. 数据库查询: 使用QSqlQuery类执行SQL查询语句,例如SELECT、INSERT、UPDATE等。查询结果可以通过迭代获取。

  3. 模型-视图架构: PyQt6提供了QSqlTableModelQSqlQueryModel等模型类,用于将数据库数据与Qt的视图类(如QTableView)连接起来。这使得在表格视图中展示和编辑数据库中的数据变得更加容易。

  4. 事务管理: 可以使用QSqlDatabase.transaction()QSqlDatabase.commit()来进行数据库事务的管理,确保数据的一致性和完整性。

  5. 数据绑定: 使用bindValue()方法可以将变量绑定到SQL查询,这有助于防止SQL注入攻击。

  6. 错误处理: 数据库操作可能会出现错误,通过检查QSqlQuerylastError()可以获取详细的错误信息。

4.1 连接数据库

使用 Qt 的 QSqlDatabase 类可以连接到数据库。以下是一个简单的示例:

from PyQt6.QtSql import QSqlDatabasedb = QSqlDatabase.addDatabase("QSQLITE")
db.setDatabaseName("my_database.db")
if db.open():print("Connected to database")
else:print("Failed to connect")

4.2 执行 SQL 查询和更新:

你可以使用 QSqlQuery 类来执行 SQL 查询和更新操作。以下是一个示例:

from PyQt6.QtSql import QSqlQueryquery = QSqlQuery()
query.exec("SELECT * FROM employees")
while query.next():name = query.value("name")print("Employee name:", name)

4.3 使用模型和视图显示数据

        Qt 提供了模型-视图架构来显示数据库中的数据。例如,可以使用 QSqlTableModel 来在 QTableView 中显示数据。以下是一个示例:

import sys
from PyQt6.QtWidgets import QApplication, QMainWindow, QTableView, QVBoxLayout, QWidget, QPushButton, QLineEdit, QDockWidget
from PyQt6.QtSql import QSqlDatabase, QSqlTableModel, QSqlQuery
from PyQt6.QtCore import Qtclass AddDataDialog(QWidget):def __init__(self, model):super().__init__()self.model = modellayout = QVBoxLayout()self.setLayout(layout)# 添加姓名输入框self.name_input = QLineEdit(self)layout.addWidget(self.name_input)# 添加职位输入框self.position_input = QLineEdit(self)layout.addWidget(self.position_input)# 添加 "Add Data" 按钮,并连接到添加数据函数add_button = QPushButton("Add Data", self)add_button.clicked.connect(self.add_data)layout.addWidget(add_button)def add_data(self):# 获取姓名和职位输入框的内容name = self.name_input.text()position = self.position_input.text()# 准备插入数据的SQL查询query = QSqlQuery()query.prepare("INSERT INTO employees (name, position) VALUES (?, ?)")query.bindValue(0, name)query.bindValue(1, position)if query.exec():print("Data added successfully")self.model.select()  # 刷新表格数据else:print("Error adding data:", query.lastError().text())def create_database_connection():# 创建数据库连接db = QSqlDatabase.addDatabase("QSQLITE")db.setDatabaseName("employees.db")if not db.open():print("Error: Could not open database.")return Nonereturn dbdef create_table(db):# 创建表格的SQL查询query = QSqlQuery()query.exec("CREATE TABLE IF NOT EXISTS employees (id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT, position TEXT)")def setup_model(db):# 设置数据库表格模型model = QSqlTableModel()model.setTable("employees")model.setEditStrategy(QSqlTableModel.EditStrategy.OnManualSubmit)  # 手动提交更改model.select()return modelif __name__ == "__main__":app = QApplication(sys.argv)db = create_database_connection()if not db:sys.exit(1)create_table(db)model = setup_model(db)view = QTableView()view.setModel(model)add_data_dialog = AddDataDialog(model)window = QMainWindow()window.setWindowTitle("Database Table Example")window.setCentralWidget(view)window.setGeometry(100, 100, 800, 600)add_data_button = QPushButton("Add Data", window)add_data_button.clicked.connect(add_data_dialog.show)# 创建 DockWidget 并添加到主窗口的右侧停靠区dock_widget = QDockWidget("Add Data", window)dock_widget.setWidget(add_data_dialog)window.addDockWidget(Qt.DockWidgetArea.RightDockWidgetArea, dock_widget)window.show()sys.exit(app.exec())

   

 5 多线程编程

5.1 多线程编程的概念和优势

        PyQt6中的多线程编程允许你在应用程序中同时执行多个任务,以提高性能、响应速度和资源利用率。在使用多线程时,你需要注意线程之间的同步和通信,以避免数据竞争和其他并发问题。以下是PyQt6多线程编程的概述:

  1. 线程类(QThread): QThread 是 PyQt6 提供的线程基类,用于创建和管理线程。你可以继承 QThread 并实现 run() 方法来定义线程的执行逻辑。

  2. 线程安全性: 在多线程环境中,多个线程可能同时访问和修改共享资源。确保对共享资源的访问是线程安全的是很重要的,可以使用互斥锁(QMutex)来控制对共享资源的访问。

  3. 信号和槽机制: 在多线程中,通常不能直接在非主线程中更新用户界面。可以使用信号和槽机制,通过在主线程中处理信号来更新界面,从而避免线程间的界面更新问题。

  4. 多线程的应用场景: 多线程在以下情况下特别有用:

    • 执行耗时操作,如文件读写、网络请求等,以避免主线程阻塞。
    • 实现实时数据刷新,如传感器数据、图表数据等。
    • 并发处理多个任务,提高程序的整体性能。
  5. 线程同步和通信: 多线程编程需要考虑线程之间的同步和通信。合适的同步机制(如互斥锁、信号量、条件变量等)和通信机制(如队列、信号槽等)可以确保线程间的正确协作。

  6. 避免死锁和线程饥饿: 死锁和线程饥饿是多线程编程中常见的问题。确保正确地设计和组织线程同步和通信,以避免出现这些问题。

总之,多线程编程可以显著提高应用程序的性能和响应能力,但也需要仔细考虑线程安全性和正确的同步机制。PyQt6提供了一些类和工具来帮助你实现多线程应用程序,但需要小心处理潜在的并发问题。

5.2 在 PyQt 中使用多线程

        在 PyQt 中,你可以使用 QThread 类来创建和管理线程。以下是一个示例,演示如何在一个线程中执行一个耗时的任务:

from PyQt6.QtCore import QThread, pyqtSignalclass WorkerThread(QThread):result_ready = pyqtSignal(str)def run(self):# 执行耗时任务result = "Task result"self.result_ready.emit(result)thread = WorkerThread()
thread.result_ready.connect(lambda result: print("Result:", result))
thread.start()

5.3 处理多线程间的同步和通信问题

        在多线程编程中,处理线程间的同步和通信问题是至关重要的,以确保数据的一致性和应用程序的稳定性。PyQt 提供了一些机制来帮助解决这些问题,其中最重要的是信号槽机制和线程安全的数据访问。

5.3.1 信号槽机制

        信号槽机制是 PyQt 中用于线程间通信的重要工具。它允许一个对象(信号的发出者)发出信号,而另一个对象(槽函数的接收者)将信号连接到槽函数,从而在信号触发时执行相应的操作。这在多线程环境下特别有用,因为它避免了直接的线程间共享数据。

以下是一个简单的示例,演示如何在多线程中使用信号槽机制:

import sys
from PyQt6.QtCore import QThread, pyqtSignal
from PyQt6.QtWidgets import QApplication, QMainWindow, QPushButtonclass WorkerThread(QThread):result_ready = pyqtSignal(str)def run(self):result = "Task result"self.result_ready.emit(result)class MyWindow(QMainWindow):def __init__(self):super().__init__()self.setWindowTitle("Thread Communication Example")self.setGeometry(100, 100, 400, 300)self.button = QPushButton("Start Task", self)self.button.setGeometry(150, 150, 100, 30)self.button.clicked.connect(self.start_thread)def start_thread(self):self.thread = WorkerThread()self.thread.result_ready.connect(self.handle_result)self.thread.start()def handle_result(self, result):print("Result:", result)if __name__ == "__main__":app = QApplication(sys.argv)window = MyWindow()window.show()sys.exit(app.exec())

  

5.3.2 线程安全的数据访问

        当多个线程同时访问共享数据时,很容易出现竞争条件和数据不一致的问题。为了避免这些问题,你需要使用互斥锁(mutex)来保护共享数据的访问。PyQt 中的 QMutex 和 QMutexLocker 可以帮助你实现线程安全的数据访问。

以下是一个简单的示例,演示如何在多线程中安全地访问共享数据:

import sys
from PyQt6.QtCore import QThread, QMutex, QMutexLockerclass SharedData:def __init__(self):self.mutex = QMutex()  # 用于保护共享数据的互斥锁self.data = 0def increment(self):locker = QMutexLocker(self.mutex)  # 加锁self.data += 1class WorkerThread(QThread):def __init__(self, shared_data):super().__init__()self.shared_data = shared_datadef run(self):for _ in range(10):self.shared_data.increment()if __name__ == "__main__":shared_data = SharedData()  # 创建共享数据对象threads = [WorkerThread(shared_data) for _ in range(4)]  # 创建多个工作线程for thread in threads:thread.start()  # 启动工作线程for thread in threads:thread.wait()  # 等待所有工作线程完成print("Shared data:", shared_data.data)  # 打印最终共享数据的值

输出: 

         在这个示例中,每个工作线程在循环中执行10次的增量操作,使用互斥锁确保在任何时候只有一个线程可以访问和修改SharedData对象的data属性。这样可以避免数据竞争和不一致的情况。

        注意,这个示例使用了Python中的多线程和互斥锁,与Qt中的线程和互斥锁略有不同。确保你的环境中同时存在Qt库和Python的线程支持(例如PyQt6.QtCorethreading库),以便代码可以正确运行。

5.4 避免死锁和线程饥饿

        避免死锁和线程饥饿是多线程编程中的关键问题。死锁指的是多个线程彼此等待对方释放锁,导致程序无法继续执行。线程饥饿是指某个线程长时间无法获得所需的资源或锁,导致其他线程占用资源,使得该线程无法继续执行。以下是在PyQt6中避免死锁和线程饥饿的详解和示例:

避免死锁:

  1. 有序获取锁: 当多个线程需要获取多个锁时,确保它们按照相同的顺序获取锁,这可以减少死锁的风险。

  2. 超时机制: 在获取锁时使用超时机制,如果无法在一定时间内获取锁,就放弃并释放已有的锁。

避免线程饥饿:

  1. 公平性: 使用公平的锁和资源分配策略,确保所有线程都有平等的机会获得资源,避免某个线程长时间无法获得所需资源。

  2. 优先级: 在某些情况下,可以通过为线程设置不同的优先级,确保高优先级线程不会长时间无法获得资源。

以下是一个简单的示例,展示如何在PyQt6中使用QMutex来避免死锁和线程饥饿:

import sys
from PyQt6.QtCore import QThread, QMutex, QMutexLocker# 共享资源类,用于展示互斥锁的使用来避免死锁和线程饥饿
class SharedResource:def __init__(self):self.mutex1 = QMutex()  # 第一个互斥锁self.mutex2 = QMutex()  # 第二个互斥锁def process1(self):with QMutexLocker(self.mutex1):  # 获取第一个锁print("Process 1: Mutex 1 locked")QThread.msleep(100)  # 模拟处理时间with QMutexLocker(self.mutex2):  # 获取第二个锁print("Process 1: Mutex 2 locked")def process2(self):with QMutexLocker(self.mutex2):  # 获取第二个锁print("Process 2: Mutex 2 locked")QThread.msleep(100)  # 模拟处理时间with QMutexLocker(self.mutex1):  # 获取第一个锁print("Process 2: Mutex 1 locked")class WorkerThread(QThread):def __init__(self, shared_resource, process_func):super().__init__()self.shared_resource = shared_resourceself.process_func = process_funcdef run(self):self.process_func()if __name__ == "__main__":shared_resource = SharedResource()thread1 = WorkerThread(shared_resource, shared_resource.process1)thread2 = WorkerThread(shared_resource, shared_resource.process2)thread1.start()  # 启动线程1thread2.start()  # 启动线程2thread1.wait()  # 等待线程1完成thread2.wait()  # 等待线程2完成print("Main thread exited")  # 主线程退出

         在这个示例中,两个线程分别尝试获取两个不同的锁(mutex1和mutex2)。通过始终以相同的顺序获取锁,可以避免死锁。同时,通过在获取锁时使用QMutexLocker,可以确保线程在离开作用域时释放锁。

        需要注意的是,死锁和线程饥饿是复杂的问题,可能在更复杂的场景中出现。避免死锁和线程饥饿需要仔细的设计和测试,以确保线程在协同工作时能够正确地进行同步和协调。

 QMutexQMutexLocker

QMutexQMutexLocker 是 PyQt 中用于线程同步的两个重要类。它们帮助确保多个线程在访问共享资源时的正确同步,以避免竞争条件和数据不一致。下面是关于它们的详解和示例:

QMutex(互斥锁): 互斥锁是一种线程同步机制,用于控制多个线程对共享资源的访问。在多线程环境中,一个线程可以获得互斥锁的所有权,从而可以安全地访问共享资源。其他线程在获取互斥锁之前必须等待,以确保同一时间只有一个线程可以访问共享资源。

示例代码:

from PyQt6.QtCore import QMutexmutex = QMutex()def thread_function():mutex.lock()# 访问共享资源mutex.unlock()# 创建多个线程,每个线程执行 thread_function

QMutexLocker(互斥锁锁定器): QMutexLockerQMutex 的一个辅助类,它在创建时自动锁定 QMutex,并在销毁时释放锁。这样可以确保在一个作用域内,线程在获取锁后能够正确地释放锁,从而避免忘记释放锁而导致的死锁。

示例代码:

from PyQt6.QtCore import QMutex, QMutexLockermutex = QMutex()def thread_function():with QMutexLocker(mutex):  # 进入作用域时自动锁定,离开作用域时自动释放# 访问共享资源# 创建多个线程,每个线程执行 thread_function

        在使用 QMutexLocker 时,当线程离开作用域(例如使用 with 语句),会自动释放锁,无论是否发生异常。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/93541.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高效数据传输:轻松上手将Kafka实时数据接入CnosDB

本篇我们将主要介绍如何在 Ubuntu 22.04.2 LTS 环境下,实现一个KafkaTelegrafCnosDB 同步实时获取流数据并存储的方案。在本次操作中,CnosDB 版本是2.3.0,Kafka 版本是2.5.1,Telegraf 版本是1.27.1 随着越来越多的应用程序架构转…

Linux驱动开发之点亮三盏小灯

头文件 #ifndef __HEAD_H__ #define __HEAD_H__//LED1和LED3的硬件地址 #define PHY_LED1_MODER 0x50006000 #define PHY_LED1_ODR 0x50006014 #define PHY_LED1_RCC 0x50000A28 //LED2的硬件地址 #define PHY_LED2_MODER 0x50007000 #define PHY_LED2_ODR 0x50007014 #define…

TiDB基础介绍、应用场景及架构

1. 什么是newsql NewSQL 是对各种新的可扩展/高性能数据库的简称,这类数据库不仅具有NoSQL对海量数据的存储管理能力,还保持了传统数据库支持ACID和SQL等特性。 NewSQL是指这样一类新式的关系型数据库管理系统,针对OLTP(读-写&…

移动通信系统的LMS自适应波束成形技术matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..................................................................... idxx0; while idxx&…

docker 基础知识

目录 1. 加载docker镜像 2. 显示所有的镜像 3. 执行镜像,生成容器, 每执行一次,便生成一个容器 4. 显示出container名称 5. 进入容器 6. 如何将文件传入容器内 首先要确保已经安装了docker。注意:服务器上若没有管理员权限&am…

(贪心) 剑指 Offer 14- II. 剪绳子 II ——【Leetcode每日一题】

❓剑指 Offer 14- II. 剪绳子 II 难度:中等 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n 都是整数,n > 1 并且 m>1 ),每段绳子的长度记为 k[0],k[1]...k[m - 1] 。请问 k[0]*k[1]*.…

数据结构的图存储结构

目录 数据结构的图存储结构 图存储结构基本常识 弧头和弧尾 入度和出度 (V1,V2) 和 的区别,v2> 集合 VR 的含义 路径和回路 权和网的含义 图存储结构的分类 什么是连通图,(强)连通图详解 强连通图 什么是生成树,生…

小程序-基于vant的Picker组件实现省市区选择

一、原因 因vant/area-data部分的市/区数据跟后台使用的高德/腾讯省市区有所出入,故须保持跟后台用同一份数据,所以考虑以下几个组件 1、Area 2、Cascader 3、Picker 因为使用的是高德地图的省市区json文件,用area的话修改结构代价太大&…

解锁园区交通新模式:园区低速自动驾驶

在当今科技飞速发展的时代,自动驾驶技术成为了备受关注的领域之一。尤其是在园区内部交通管理方面,自动驾驶技术的应用正在日益受到重视。 园区低速自动驾驶的实现需要多个技术领域的协同合作,包括自动驾驶技术、计算机视觉技术、通信技术、物…

KVM虚拟机管理

1、创建、删除快照 关机 init0 列出快照 删除快照 2、虚拟机迁移 报错 解决:关闭防火墙,关闭selinux 其他解决办法:kvm热迁移使用nfs共享存储报错_莉法的博客-CSDN博客

神经网络基础-神经网络补充概念-14-逻辑回归中损失函数的解释

概念 逻辑回归损失函数是用来衡量逻辑回归模型预测与实际观测之间差异的函数。它的目标是找到一组模型参数,使得预测结果尽可能接近实际观测。 理解 在逻辑回归中,常用的损失函数是对数似然损失(Log-Likelihood Loss)&#xff…

网络安全 Day30-运维安全项目-容器架构上

容器架构上 1. 什么是容器2. 容器 vs 虚拟机(化) :star::star:3. Docker极速上手指南1)使用rpm包安装docker2) docker下载镜像加速的配置3) 载入镜像大礼包(老师资料包中有) 4. Docker使用案例1) 案例01::star::star::…

Redis-分布式锁!

分布式锁,顾名思义,分布式锁就是分布式场景下的锁,比如多台不同机器上的进程,去竞争同一项资源,就是分布式锁。 分布式锁特性 互斥性:锁的目的是获取资源的使用权,所以只让一个竞争者持有锁,这…

三分之一的英国大学生被欺诈

根据NatWest的一项新研究,去年英国大学三分之一的学生在网上遭遇欺诈。 今年5月,这家高街银行委托咨询公司RedBrick对来自63个城镇的3000多名英国大学生进行了调查。 尽管三分之一的受访者表示他们在过去的12个月里遇到过诈骗,但没有统计数…

【Unity每日一记】资源加载相关你掌握多少?

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:uni…

opencv进阶08-K 均值聚类cv2.kmeans()介绍及示例

K均值聚类是一种常用的无监督学习算法,用于将一组数据点分成不同的簇(clusters),以便数据点在同一簇内更相似,而不同簇之间差异较大。K均值聚类的目标是通过最小化数据点与所属簇中心之间的距离来形成簇。 当我们要预测…

【C++学习手札】一文带你初识C++继承

食用指南:本文在有C基础的情况下食用更佳 🍀本文前置知识: C类 ♈️今日夜电波:napori—Vaundy 1:21 ━━━━━━️💟──────── 3:23 …

英语学习 Eudic欧路词典 for Mac

欧路词典是一款功能强大的英语学习工具,其多语种支持、海量词库、强大的翻译功能、听力训练和生词本和笔记等特点,使得用户可以方便地进行英语学习和提高英语水平,适用于各种英语学习人员和文化交流人员等不同人群。 1 、全面支持最新Retina…

《cpolar内网穿透》外网SSH远程连接linux(CentOS)服务器

本次教程我们来实现如何在外公网环境下,SSH远程连接家里/公司的Linux CentOS服务器,无需公网IP,也不需要设置路由器。 视频教程 [video(video-jrpesBrv-1680147672481)(type-csdn)(url-CSDN直播https://live-file.csdnimg.cn/release/live/…

[oneAPI] 手写数字识别-LSTM

[oneAPI] 手写数字识别-LSTM 手写数字识别参数与包加载数据模型训练过程结果 oneAPI 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolk…