数据结构的图存储结构

目录

数据结构的图存储结构

图存储结构基本常识

弧头和弧尾

入度和出度

(V1,V2) 和 的区别,v2>

集合 VR 的含义

路径和回路

权和网的含义

图存储结构的分类

什么是连通图,(强)连通图详解

强连通图

什么是生成树,生成树(生成森林)详解

生成森林


数据结构的图存储结构

我们知道,数据之间的关系有 3 种,分别是 "一对一"、"一对多" 和 "多对多",前两种关系的数据可分别用线性表和树结构存储,本节学习存储具有"多对多"逻辑关系数据的结构——图存储结构。


 

图存储结构示意图


图 1 图存储结构示意图


图 1 所示为存储 V1、V2、V3、V4 的图结构,从图中可以清楚的看出数据之间具有的"多对多"关系。例如,V1 与 V4 和 V2 建立着联系,V4 与 V1 和 V3 建立着联系,以此类推。

与链表不同,图中存储的各个数据元素被称为顶点(而不是节点)。拿图 1 来说,该图中含有 4 个顶点,分别为顶点 V1、V2、V3 和 V4。

图存储结构中,习惯上用 Vi 表示图中的顶点,且所有顶点构成的集合通常用 V 表示,如图 1 中顶点的集合为 V={V1,V2,V3,V4}。


注意,图 1 中的图仅是图存储结构的其中一种,数据之间 "多对多" 的关系还可能用如图 2 所示的图结构表示:


 

有向图示意图


图 2 有向图示意图


可以看到,各个顶点之间的关系并不是"双向"的。比如,V4 只与 V1 存在联系(从 V4 可直接找到 V1),而与 V3 没有直接联系;同样,V3 只与 V4 存在联系(从 V3 可直接找到 V4),而与 V1 没有直接联系,以此类推。

因此,图存储结构可细分两种表现类型,分别为无向图(图 1)和有向图(图 2)。

图存储结构基本常识

弧头和弧尾

有向图中,无箭头一端的顶点通常被称为"初始点"或"弧尾",箭头直线的顶点被称为"终端点"或"弧头"。

入度和出度

对于有向图中的一个顶点 V 来说,箭头指向 V 的弧的数量为 V 的入度(InDegree,记为 ID(V));箭头远离 V 的弧的数量为 V 的出度(OutDegree,记为OD(V))。拿图 2 中的顶点 V1来说,该顶点的入度为 1,出度为 2(该顶点的度为 3)。

(V1,V2) 和 <V1,V2> 的区别

无向图中描述两顶点(V1 和 V2)之间的关系可以用 (V1,V2) 来表示,

而有向图中描述从 V1 到 V2 的"单向"关系用 <V1,V2> 来表示。

由于图存储结构中顶点之间的关系是用线来表示的,因此 (V1,V2) 还可以用来表示无向图中连接 V1 和 V2 的线,又称为边;同样,<V1,V2> 也可用来表示有向图中从 V1 到 V2 带方向的线,又称为弧。

集合 VR 的含义

并且,图中习惯用 VR 表示图中所有顶点之间关系的集合。例如,图 1 中无向图的集合 VR={(v1,v2),(v1,v4),(v1,v3),(v3,v4)},图 2 中有向图的集合 VR={<v1,v2>,<v1,v3>,<v3,v4>,<v4,v1>}。

路径和回路

无论是无向图还是有向图,从一个顶点到另一顶点途径的所有顶点组成的序列(包含这两个顶点),称为一条路径。如果路径中第一个顶点和最后一个顶点相同,则此路径称为"回路"(或"环")。

并且,若路径中各顶点都不重复,此路径又被称为"简单路径";同样,若回路中的顶点互不重复,此回路被称为"简单回路"(或简单环)。

拿图 1 来说,从 V1 存在一条路径还可以回到 V1,此路径为 {V1,V3,V4,V1},这是一个回路(环),而且还是一个简单回路(简单环)。

在有向图中,每条路径或回路都是有方向的。

权和网的含义

在某些实际场景中,图中的每条边(或弧)会赋予一个实数来表示一定的含义,这种与边(或弧)相匹配的实数被称为"权",而带权的图通常称为网。如图 3 所示,就是一个网结构:


 

带权的图存储结构


图 3 带权的图存储结构


子图:指的是由图中一部分顶点和边构成的图,称为原图的子图。

图存储结构的分类

根据不同的特征,图又可分为完全图,连通图、稀疏图和稠密图:

完全图:若图中各个顶点都与除自身外的其他顶点有关系,这样的无向图称为完全图(如图 4a))。同时,满足此条件的有向图则称为有向完全图(图 4b))。


 

完全图示意图


图 4 完全图示意图

具有 n 个顶点的完全图,图中边的数量为 n(n-1)/2;

对于具有 n 个顶点的有向完全图,图中弧的数量为 n(n-1)。

  • 稀疏图和稠密图:这两种图是相对存在的,即如果图中具有很少的边(或弧),此图就称为"稀疏图";反之,则称此图为"稠密图"。

    稀疏和稠密的判断条件是:e<nlogn,其中 e 表示图中边(或弧)的数量,n 表示图中顶点的数量。如果式子成立,则为稀疏图;反之为稠密图。

什么是连通图,(强)连通图详解


前面讲过,图中从一个顶点到达另一顶点,若存在至少一条路径,则称这两个顶点是连通着的。例如图 1 中,虽然 V1 和 V3 没有直接关联,但从 V1 到 V3 存在两条路径,分别是 V1-V2-V3 和 V1-V4-V3,因此称 V1 和 V3 之间是连通的。


 

顶点之间的连通状态示意图


图 1 顶点之间的连通状态示意图


无向图中,如果任意两个顶点之间都能够连通,则称此无向图为连通图。例如,图 2 中的无向图就是一个连通图,因为此图中任意两顶点之间都是连通的。


 

连通图示意图


图 2 连通图示意图


若无向图不是连通图,但图中存储某个子图符合连通图的性质,则称该子图为连通分量

前面讲过,由图中部分顶点和边构成的图为该图的一个子图,但这里的子图指的是图中"最大"的连通子图(也称"极大连通子图")。

如图 3 所示,虽然图 3a) 中的无向图不是连通图,但可以将其分解为 3 个"最大子图"(图 3b)),它们都满足连通图的性质,因此都是连通分量。


 


图 3 连通分量示意图

提示,图 3a) 中的无向图只能分解为 3 部分各自连通的"最大子图"。

需要注意的是,连通分量的提出是以"整个无向图不是连通图"为前提的,因为如果无向图是连通图,则其无法分解出多个最大连通子图,因为图中所有的顶点之间都是连通的。

强连通图

有向图中,若任意两个顶点 Vi 和 Vj,满足从 Vi 到 Vj 以及从 Vj 到 Vi 都连通,也就是都含有至少一条通路,则称此有向图为强连通图。如图 4 所示就是一个强连通图。


 

强连通图


图 4 强连通图


与此同时,若有向图本身不是强连通图,但其包含的最大连通子图具有强连通图的性质,则称该子图为强连通分量。


 

强连通分量


图 5 强连通分量


如图 5 所示,整个有向图虽不是强连通图,但其含有两个强连通分量。

可以这样说,连通图是在无向图的基础上对图中顶点之间的连通做了更高的要求,而强连通图是在有向图的基础上对图中顶点的连通做了更高的要求。

什么是生成树,生成树(生成森林)详解

对连通图进行遍历,过程中所经过的边和顶点的组合可看做是一棵普通树,通常称为生成树。


 

连通图及其对应的生成树


图 1 连通图及其对应的生成树


如图 1 所示,图 1a) 是一张连通图,图 1b) 是其对应的 2 种生成树。

连通图中,由于任意两顶点之间可能含有多条通路,遍历连通图的方式有多种,往往一张连通图可能有多种不同的生成树与之对应。

连通图中的生成树必须满足以下 2 个条件:

  1. 包含连通图中所有的顶点;
  2. 任意两顶点之间有且仅有一条通路;


因此,连通图的生成树具有这样的特征,即生成树中边的数量 = 顶点数 - 1

生成森林

生成树是对应连通图来说

而生成森林是对应非连通图来说的。

我们知道,非连通图可分解为多个连通分量,而每个连通分量又各自对应多个生成树(至少是 1 棵),因此与整个非连通图相对应的,是由多棵生成树组成的生成森林。


 

非连通图和连通分量


图 2 非连通图和连通分量


如图 2 所示,这是一张非连通图,可分解为 3 个连通分量,其中各个连通分量对应的生成树如图 3 所示:


 

生成森林


图 3 生成森林

注意,图 3 中列出的仅是各个连通分量的其中一种生成树。

因此,多个连通分量对应的多棵生成树就构成了整个非连通图的生成森林。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/93532.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小程序-基于vant的Picker组件实现省市区选择

一、原因 因vant/area-data部分的市/区数据跟后台使用的高德/腾讯省市区有所出入&#xff0c;故须保持跟后台用同一份数据&#xff0c;所以考虑以下几个组件 1、Area 2、Cascader 3、Picker 因为使用的是高德地图的省市区json文件&#xff0c;用area的话修改结构代价太大&…

解锁园区交通新模式:园区低速自动驾驶

在当今科技飞速发展的时代&#xff0c;自动驾驶技术成为了备受关注的领域之一。尤其是在园区内部交通管理方面&#xff0c;自动驾驶技术的应用正在日益受到重视。 园区低速自动驾驶的实现需要多个技术领域的协同合作&#xff0c;包括自动驾驶技术、计算机视觉技术、通信技术、物…

KVM虚拟机管理

1、创建、删除快照 关机 init0 列出快照 删除快照 2、虚拟机迁移 报错 解决&#xff1a;关闭防火墙&#xff0c;关闭selinux 其他解决办法&#xff1a;kvm热迁移使用nfs共享存储报错_莉法的博客-CSDN博客

神经网络基础-神经网络补充概念-14-逻辑回归中损失函数的解释

概念 逻辑回归损失函数是用来衡量逻辑回归模型预测与实际观测之间差异的函数。它的目标是找到一组模型参数&#xff0c;使得预测结果尽可能接近实际观测。 理解 在逻辑回归中&#xff0c;常用的损失函数是对数似然损失&#xff08;Log-Likelihood Loss&#xff09;&#xff…

网络安全 Day30-运维安全项目-容器架构上

容器架构上 1. 什么是容器2. 容器 vs 虚拟机(化) :star::star:3. Docker极速上手指南1&#xff09;使用rpm包安装docker2) docker下载镜像加速的配置3) 载入镜像大礼包&#xff08;老师资料包中有&#xff09; 4. Docker使用案例1&#xff09; 案例01&#xff1a;:star::star::…

Redis-分布式锁!

分布式锁&#xff0c;顾名思义&#xff0c;分布式锁就是分布式场景下的锁&#xff0c;比如多台不同机器上的进程&#xff0c;去竞争同一项资源&#xff0c;就是分布式锁。 分布式锁特性 互斥性:锁的目的是获取资源的使用权&#xff0c;所以只让一个竞争者持有锁&#xff0c;这…

三分之一的英国大学生被欺诈

根据NatWest的一项新研究&#xff0c;去年英国大学三分之一的学生在网上遭遇欺诈。 今年5月&#xff0c;这家高街银行委托咨询公司RedBrick对来自63个城镇的3000多名英国大学生进行了调查。 尽管三分之一的受访者表示他们在过去的12个月里遇到过诈骗&#xff0c;但没有统计数…

【Unity每日一记】资源加载相关你掌握多少?

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…

opencv进阶08-K 均值聚类cv2.kmeans()介绍及示例

K均值聚类是一种常用的无监督学习算法&#xff0c;用于将一组数据点分成不同的簇&#xff08;clusters&#xff09;&#xff0c;以便数据点在同一簇内更相似&#xff0c;而不同簇之间差异较大。K均值聚类的目标是通过最小化数据点与所属簇中心之间的距离来形成簇。 当我们要预测…

【C++学习手札】一文带你初识C++继承

食用指南&#xff1a;本文在有C基础的情况下食用更佳 &#x1f340;本文前置知识&#xff1a; C类 ♈️今日夜电波&#xff1a;napori—Vaundy 1:21 ━━━━━━️&#x1f49f;──────── 3:23 …

英语学习 Eudic欧路词典 for Mac

欧路词典是一款功能强大的英语学习工具&#xff0c;其多语种支持、海量词库、强大的翻译功能、听力训练和生词本和笔记等特点&#xff0c;使得用户可以方便地进行英语学习和提高英语水平&#xff0c;适用于各种英语学习人员和文化交流人员等不同人群。 1 、全面支持最新Retina…

《cpolar内网穿透》外网SSH远程连接linux(CentOS)服务器

本次教程我们来实现如何在外公网环境下&#xff0c;SSH远程连接家里/公司的Linux CentOS服务器&#xff0c;无需公网IP&#xff0c;也不需要设置路由器。 视频教程 [video(video-jrpesBrv-1680147672481)(type-csdn)(url-CSDN直播https://live-file.csdnimg.cn/release/live/…

[oneAPI] 手写数字识别-LSTM

[oneAPI] 手写数字识别-LSTM 手写数字识别参数与包加载数据模型训练过程结果 oneAPI 比赛&#xff1a;https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI&#xff1a;https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolk…

5G无人露天矿山解决方案

1、5G无人露天矿山解决方案背景 ①2010.10&#xff0c;国家安监总局《金属非金属地下矿山安全避险“六大系统”安装使用和监督检查暂行规定》 ②2016.03&#xff0c;国家发改委《能源技术革命创新行动计划&#xff08;2016-2030&#xff09;》&#xff0c;2025 年重点煤矿区采…

6.1 安全漏洞与网络攻击

数据参考&#xff1a;CISP官方 目录 安全漏洞及产生原因信息收集与分析网络攻击实施后门设置与痕迹清除 一、安全漏洞及产生原因 什么是安全漏洞 安全漏洞也称脆弱性&#xff0c;是计算机系统存在的缺陷 漏洞的形式 安全漏洞以不同形式存在漏洞数量逐年递增 漏洞产生的…

强化学习:用Python训练一个简单的机器人

一、介绍 强化学习&#xff08;RL&#xff09;是一个令人兴奋的研究领域&#xff0c;它使机器能够通过与环境的交互来学习。在这篇博客中&#xff0c;我们将深入到RL的世界&#xff0c;并探索如何使用Python训练一个简单的机器人。在本文结束时&#xff0c;您将对 RL 概念有基本…

Qt 杂项(Qwt、样式等)

Qt隐藏窗口边框 this->setWindowFlags(Qt::FramelessWindowHint);Qt模态框 this->setWindowModality(Qt::ApplicationModal);QLable隐藏border 代码中设置 lable->setStyleSheet("border:0px");或者UI中直接设置样式&#xff1a;“border:0px” Qwt开源…

什么是DNS服务器的层次化和分布式?

DNS (Domain Name System) 的结构是层次化的&#xff0c;意味着它是由多个级别的服务器组成&#xff0c;每个级别负责不同的部分。以下是 DNS 结构的层次&#xff1a; 根域服务器&#xff08;Root Servers&#xff09;&#xff1a; 这是 DNS 层次结构的最高级别。全球有13组根域…

chrome解决http自动跳转https问题

1.地址栏输入&#xff1a; chrome://net-internals/#hsts 2.找到底部Delete domain security policies一栏&#xff0c;输入想处理的域名&#xff0c;点击delete。 例如我之前可能访问过这个网址&#xff0c;https://test.apac.com:9090/login 但是后面我去掉了https协议&…

Patch SCN一键解决ORA-600 2662故障---惜分飞

客户强制重启库之后,数据库启动报ORA-600 2037,ORA-745 kcbs_reset_pool/kcbzre1等错误 Wed Aug 09 13:25:38 2023 alter database mount exclusive Successful mount of redo thread 1, with mount id 1672229586 Database mounted in Exclusive Mode Lost write protection d…